<span>The change in the electron's potential energy is equal to the work done on the electron by the electric field. The electron's potential energy is the stored energy relative to the electron's position in the electric field. Vcloud - Vground represents the change in Voltage. This voltage quantity is given to be 3.50 x 10^8 V, with the electron at the lower potential. The formula for calculating the change in the electron's potential energy (EPE) is found by charge x (Vcloud - Vground) = (EPEcloud - EPE ground) where charge is constant = 1.6 x 10^-19. Filling in the known quantities results in the expression 1.6 x 10^-19 (3.50 x 10^8) = (EPEcloud - EPEground) = 5.6 x 10^-11. Therefore, the change in the electron's potential energy from cloud to ground is 5.6 x 10^-11 joules.</span>
where are the answer choises
Answer
given,
current (I) = 16 mA
circumference of the circular loop (S)= 1.90 m
Magnetic field (B)= 0.790 T
S = 2 π r
1.9 = 2 π r
r = 0.3024 m
a) magnetic moment of loop
M= I A
M=
M=
M=
b) torque exerted in the loop



If we use the equation:
N2 + 3H2 --> 2NH3
Then
1 mol of Nitrogen required 3 moles of Hydrogen
x mols : 6.34mols
X = 6.34/3
X = 2.11 moles of Nitrogen are required.
Answer:
10.6cm
Explanation:
We are given 5.3cm below the starting point (spring extension).
Therefore, to find static vertical equilibrium, we use the equation:
kx = mg
Where:
k = spring constant =
=mg/5.3 kg/s²
We are told the object was dropped from rest.
Therefore:
loss in potential energy = gain in spring p.e
Let's use the expression:
mgx = ½kx²
We are asked to find the stretch at maximum elongation x.
To find x, we make x subject of the formula.
Therefore, we have:
x = 2mg/k (after rearranging the equation above)
x = (2mg) / (mg/5.3)
x = 10.6cm