Using the initial momentum vector as a basis, the change in momentum vector Δp for the cart is drawn as shown in the attachment.
<h3>Further explanation</h3>
Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.
F = Force ( Newton )
m = Object's Mass ( kg )
a = Acceleration ( m )
Let us now tackle the problem !
<u>Given:</u>
Initial speed of cart = v_i = v
Final speed of cart = v_f = v
<u>Unknown:</u>
The change in momentum of cart = I = ?
<u>Solution:</u>
<em>From the results above, we can conclude that the change in momentum vector Δp is twice the initial momentum vector p_i but in opposite direction.</em>
The vector <em>Δp could be drawn as shown </em><em>in the attachment.</em>
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Dynamics
Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant
#LearnWithBrainly