Answer:
t_total = 23.757 s
Explanation:
This is a kinematics exercise.
Let's start by calculating the distance and has to reach the limit speed of
v = 18.8 m / s
v = v₀ + a t₁
the elevator starts with zero speed
v = a t₁
t₁ = v / a
t₁ = 18.8 / 2.40
t₁ = 7.833 s
in this time he runs
y₁ = v₀ t₁ + ½ a t₁²
y₁ = ½ a t₁²
y₁ = ½ 2.40 7.833²
y₁ = 73.627 m
This is the time and distance traveled until reaching the maximum speed, which will be constant throughout the rest of the trip.
x_total = x₁ + x₂
x₂ = x_total - x₁
x₂ = 373 - 73,627
x₂ = 299.373 m
this distance travels at constant speed,
v = x₂ / t₂
t₂ = x₂ / v
t₂ = 299.373 / 18.8
t₂ = 15.92 s
therefore the total travel time is
t_total = t₁ + t₂
t_total = 7.833 + 15.92
t_total = 23.757 s
Explanation:
Load=800N
Effort=200N
1. Mechanical Advantage = LOAD/EFFORT
= 800N/200N
= 4
2 Velocity Ratio = no. Of pulleys =5
3. Efficiency = Mechanical advantage / velocity ratio × 100%
= (4/5)×100%
=80%
4. output work= load×load distance
= 800N × 5m
= 4 × 1000J
5. Efficiency = (output work/input work) ×100%
Or, 80% = (4000J/input work) ×100%
Or, 80%/100% = 4000J/inputwork
Or, 4/5 = 4000J/inputwork
Or, input work =4000J × 5/4
Input work = 5×1000J
I hope it helped! ;-)
I don’t see any answer choice but the best way is asking questions about the natural phenomenon, making hypothesis, and predicting the consequences in the hypothesis.
Answer:
The magnitude of magnetic field is 1.19 T and its direction magnetic is in negative x direction.
Explanation:
Given that,
Speed of a proton,
(due +x direction)
When it moves in the positive y direction it experiences a force of,
(due positive z direction)
We need to find the magnitude and direction of the magnetic field. The magnetic force is given by :

For direction :

So, the magnitude of magnetic field is 1.19 T and its direction magnetic is in negative x direction.
Answer:
Turbines in coal factories
Explanation:
Turbines in coal factories use steam power to move the turbine flaps and generate static electricity as energy output.