The conservation of energy always holds true even when not clearly observable in machines that are less than 100% efficient. More often than not a machine will suffer energy losses (e.g. consider for a cooling fan: friction between the rotating blades, drag resistance in the air the fan is pushing around, resistance in the wire, and heat radiating/conducting away from the circuitry).
Answer:
Explanation:
1) TRUE; potential difference can be calculated using path integral. Since the electric field is a conservative, the potential difference can be calculated using any path.
2) TRUE; since potential due to a charge is inversely dependent on distance, at infinity the potential will be almost zero.
3) TRUE, W = q.VBA.
4) FALSE; eV is a unit for work (or) energy.
5) TRUE; since the electric force is conservative force. There will be no loss in energy, the decreased potential energy will be coverted to kinetic energy.
6) FALSE; in the direction of electric field the potential decreases.
7) FALSE; equipotential surface is perpendicular to the electric field lines.
8) FALSE; electrostatic potential is scalar quantity. It depends only on the charge and distance from it.
9) FALSE; Inside a conductor the electric field is zero but the electric potential is constant at the value that is at the surface of the conductor.
10) TRUE; as long as the field is being measured outiside the body the bodies act as point charges. So electric fields due to all types of bodies charged identically will be equal.
Answer:
The minimum time to get the car under max. speed limit of 79 km/h is 2.11 seconds.
Explanation:

isolating "t" from this equation:

Where:
a=
(negative because is decelerating)

First we must convert velocity from km/h to m/s to be consistent with units.


So;

It’s 25 because I already took the testing