1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
4 years ago
5

The following is current scientific evidence supporting the nebular theory on the formation of the solar system.

Physics
2 answers:
tatyana61 [14]4 years ago
7 0
A the answer
hope it helps
Feliz [49]4 years ago
4 0
A.the composition of the inner and outer planets, current observations of star formation, and the motion of the solar system I hope this helps
You might be interested in
A 13.6 kg block is tied at the top of an incline to a tree. If the incline is 35.5 degrees and the coefficient of friction betwe
Gre4nikov [31]

Answer:

Explanation:

ASSUMING that block = sled AND that the rope is parallel to the slope.

The force acting parallel due to the weight is

13.6(9.81)sin35.5 = 77.475 N

The maximum friction force is

(0.45)13.6(9.81)cos35.5 = 48.877 N

If rope tension is T

77.475 - 48.877 < T < 77.475 + 48.877

            28.6 N < T < 126 N

28.6 N will occur if the block is on the verge of sliding downhill

126 N will occur if the block is on the verge of sliding uphill

Could be any value between them.

5 0
3 years ago
A 150 cm long string vibrates with 3 loops and its frequency is 80 Hz. What will be the wavelength and velocity of the waves?
Vlad1618 [11]

Answer:

since each loop is ewuvivalent to one half wave lenght . the length of the string is equal to two halves of a wavelength . put in the form of an equation in the same reasoning also

5 0
3 years ago
Assume that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic inte
faltersainse [42]

Answer:

Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all - option A

Explanation:

Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all; the reason being that: no magnetic field is being produced by a charge that is static. Only a moving charge can produce a magnetic effect. And the magnet can not have any torque due to its own magnetic lines of force.

5 0
3 years ago
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
How long does it take for an obituary to appear?
Licemer1 [7]
24hours is the correct answer
6 0
4 years ago
Read 2 more answers
Other questions:
  • Three cars, car X, car Y and car Z, begin accelerating from rest,at the same time. Car X is more massive than car Y, which is mo
    14·1 answer
  • 50 The emissivity of galvanized steel sheet, a common roofing material, is s = 0.13 at temperatures around 300 K, while its abso
    14·1 answer
  • As a storm front moves in you notice that the column of mercury in a barometer rises to only mm. (a) what is the air pressure? k
    8·1 answer
  • 1) An object with a height of 36 cm is placed 2.1 m in front of a concave mirror with a focal length of 0.50 m. a) Determine the
    13·1 answer
  • A 1.5m wire carries a 4 A current when a potential difference of 63 V is applied. What is the resistance of the wire?
    14·1 answer
  • The girl is using her arm to lift a weight. Her arm is acting as a _______.
    9·2 answers
  • Question 1
    14·1 answer
  • Which rock is made mostly of dark, fine-grained silicate minerals, chiefly plagioclase feldspar and pyroxene, and magnetite?
    5·1 answer
  • Can someone list 6 advantages of renewable energy.
    8·1 answer
  • What is the weight of a 63.7 kg person? ?N
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!