I believe the best answer is law, as scientific laws are accepted to be true under the proper conditions.
Answer:
The object in a uniform motion covers same distances in an equal time period. Objects in a non-uniform motion cover dissimilar distances in an equal time period.
Explanation:
The speed of the object traveling in uniform motion is constant, the actual speed and the average speed of the moving body is same.
The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
Answer:
hhhhhhhhhhhhhhhhhhhhh
Explanation:
sjdnxjwodj1oeixjwkw9dijwqoisjd1
sjssusidej
Answer:
1.93 x 10∧3 N
Explanation:
The picture attached shows the calculation