Solutions are a type of mixture.
A solution is a homogeneous mixture of particles so small that they cannot be seen and cannot be filtered out.
Definition: Homogeneous mixture looks the same.
I grabbed these from my science notes, hope this helps.
Answer:
pH =3.8
Explanation:
Lets call the monoprotic weak acid HA, the dissociation equilibria in water will be:
HA + H₂O ⇄ H₃O⁺ + A⁻ with Ka = [ H₃O⁺] x [A⁻]/ [HA]
The pH is the negative log of the H₃O⁺ concentration, we know the equilibrium constant, Ka and the original acid concentration. So we will need to find the [H₃O⁺] to solve this question.
In order to do that lets set up the ICE table helper which accounts for the species at equilibrium:
HA H₃O⁺ A⁻
Initial, M 0.40 0 0
Change , M -x +x +x
Equilibrium, M 0.40 - x x x
Lets express these concentrations in terms of the equilibrium constant:
Ka = x² / (0.40 - x )
Now the equilibrium constant is so small ( very little dissociation of HA ) that is safe to approximate 0.40 - x to 0.40,
7.3 x 10⁻⁶ = x² / 0.40 ⇒ x = √( 7.3 x 10⁻⁶ x 0.40 ) = 1.71 x 10⁻³
[H₃O⁺] = 1.71 x 10⁻³
Indeed 1.71 x 10⁻³ is small compared to 0.40 (0.4 %). To be a good approximation our value should be less or equal to 5 %.
pH = - log ( 1.71 x 10⁻³ ) = 3.8
Note: when the aprroximation is greater than 5 % we will need to solve the resulting quadratic equation.
Answer:
Neon
The highest density among the inert gases is of Neon (Ne). This a factual data. Thus the highest density among given options is of Ne, as all the options are of inert gases.
Explanation:
hope it helps u
FOLLOW MY ACCOUNT PLS PLS
It represents the number of moles required of that molecule to balance the chemical equation, which means to have the reaction chemically happen and goes to completion.
For example:
CH4 + O2 --> H2O + CO2 that is not balanced
with the coefficients located
CH4 + 2O2 --> 2H2O + CO2 now with the coefficients the number of oxygen and hydrogen on each side are equal