El oro solido se derrite y convierte en liquido a la temperatura de 1,948°F o de 1064.444°C. A esa temperatura o mas se condera liquido el oro
1-5.037077324x10^23
Use these magic triangles they will help you a lot
12 moles H2O
Explanation:
Your tools of choice for stoichiometry problems will always be the mole ratios that exist between the chemical species that take part in the reaction.
As you know, the stoichiometric coefficients attributed to each compound in the balanced chemical equation can be thought of as moles of reactants needed or moles of products formed in the reaction.
Answer:
Choice B, C, and D.
Explanation:
Choice A is not true in general. Here's a way to think about that. Consider a very special equilibrium where the concentration of reactants and products are indeed equal. When one of the external factors (such as temperature) changes, the equilibrium will shift towards either side of the reaction. More products will be converted to reactants, or vice versa. Either way, in the new equilibrium, the concentration of the reactants and products will not be equal any more.
Choice B should be considered with choice C and D in mind.
Choice C is indeed correct. The reaction rate would not be zero unless all the reactants were used up or taken out of the system. That's not what happens in an equilibrium. Instead, when reaction rate is plotted against time, the graph for reactions in both directions will eventually flat out at a non-zero value.
Choice D explains why even though choice C is correct, the concentration of a system at equilibrium stays the same. At the equilibrium, reactions in both directions are still happening. However, during the time it takes for the forward reaction use up some reactant particles, the reverse reaction would have produced these particles again. On a large scale, there would be no observable change to the concentration of each species in the equilibrium. Therefore, choice B is also correct.
Answer: Thus the concentration of the sulfuric acid is 0.1201 M
Explanation:

To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

Thus the concentration of the sulfuric acid is 0.1201