Answer:
a
No
b
100 mm Hg
Explanation:
From the question we are told that
The vapor pressure of CHCl3, is 
The temperature of CHCl3 is 
The volume of the container is 
The temperature of the container is 
The mass of CHCl3 is m = 0.380 g
Generally the number of moles of CHCl3 present before evaporation started is mathematically represented as

Here M is the molar mass of CHCl3 with the value 
=> 
=>
Generally the number of moles of CHCl3 gas that evaporated is mathematically represented as

Here R is the gas constant with value 
So
Given that the number of moles of CHCl3 evaporated is less than the number of moles of CHCl3 initially present , then it mean s that not all the liquid evaporated
At equilibrium the temperature of CHCl3 will be equal to the pressure of air so the pressure at equilibrium is 100 mmHg
Answer:
The molality of the KCl solution is 11.8 molal
Explanation:
Step 1: Data given
Mol fracrion KCl = 0.175
Molar mass KCl = 74.55 g/mol
Molar mass H2O = 18.02 g/mol
Step 2: Calculate mol fraction H2O
mol fraction H2O = 1 - 0.175 = 0.825
Step 3: Calulate mass of H2O
Suppose the total moles = 1.0 mol
Mass H2O = moles H2O * molar mass
Mass H2O = 0.825 * 18.02 g/mol
Mass H2O = 14.87 grams = 0.01487 kg
Step 4: Calculate molality
Molality KCl = 0.175 / 0.01487 kg
Molality KCl = 11.8 molal
The molality of the KCl solution is 11.8 molal
For both of them, used the balanced equation and it’s mole ratio to convert whatever you need to into moles. See the attacked work.
1) D 5 mols
2) A 0.55 mols
A 250 ml sample of saturated a g o h solution was titrated with h c l , and the endpoint was reached after 2. 60 ml of 0. 0136 m h c l was dispensed. Based on this titration, what is the k s p of a g o h <u>. Ksp=1.9×10⁻⁸</u>
<h3>What is titration?</h3>
Titration is a typical laboratory technique for quantitative chemical analysis used to calculate the concentration of a specified analyte. It is also referred to as titrimetry and volumetric analysis (a substance to be analyzed). A standard solution with a known concentration and volume is prepared as the reagent, also known as the titrant or titrator. To ascertain the concentration of the analyte, the titrant reacts with an analyte solution (also known as the titrand). The titration volume is the amount of titrant that interacted with the analyte.
A typical titration starts with a beaker or Erlenmeyer flask being placed below a calibrated burette or chemical pipetting syringe that contains the titrant and a little amount of the indicator (such as phenolphthalein).
To learn more about titration from the given link:
brainly.com/question/186765
#SPJ4
<span>Data:
pH = 5.2
[H+] = ?
Knowing that: (</span><span>Equation to find the pH of a solution)</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
<span>
Solving:
</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
![5.2 = - log [H+]](https://tex.z-dn.net/?f=5.2%20%3D%20-%20log%20%5BH%2B%5D)
Knowing that the exponential is the opposite operation of the logarithm, then we have:
![[H+] = 10^{-5.2}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-5.2%7D)