Answer:
55.66 m
Explanation:
While falling by 50 m , initial velocity u = 0
final velocity = v , height h = 50 , acceleration g = 9.8
v² = u² + 2gh
= 0 + 2 x 9.8 x 50
v = 31.3 m /s
After that deceleration comes into effect
In this case final velocity v = 17 m/s
initial velocity u = 31.3 m/s
acceleration a = - 61 m/s²
distance traveled h = ?
v² = u² + 2gh
(17)² = (31.3)² - 2x 61xh
h = 690.69 / 2 x 61
= 5.66 m
Total height during which he was in air
= 50 + 5.66
= 55.66 m
Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here
Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)
Answer:
Resultant Force=33.8 lb
Angle=67.2°
Explanation:
Given data
Fa=22 lb
Fb=16 lb
Θ=55⁰
To find
(i) Resultant Force F
(ii)Angle α
Solution
First we need to represent the forces in vector form

Total Force

The Resultant Force is given as

For(ii) angle
We can find the angle bu using tanα=y/x
So

You put electricity<span> into it at one end and an </span>axle<span> (metal rod) rotates at the other end giving you the power to drive a machine of some kind.
</span>
Answer:
The second law of thermodynamics states in an isolated system, the entropy (the amount of thermal energy that cannot be converted into mechanical work, also known as the amount of disorder) always increases, therefore, an isolated system always require an external input (new sources) of energy for there to be orderliness or for the available energy of the system to remain constant or increase
Explanation: