Answer:
4,38%
small molecular volumes
Decrease
Explanation:
The percent difference between the ideal and real gas is:
(47,8atm - 45,7 atm) / 47,8 atm × 100 = 4,39% ≈ <em>4,38%</em>
This difference is considered significant, and is best explained because argon atoms have relatively <em>small molecular volumes. </em>That produce an increasing in intermolecular forces deviating the system of ideal gas behavior.
Therefore, an increasing in volume will produce an ideal gas behavior. Thus:
If the volume of the container were increased to 2.00 L, you would expect the percent difference between the ideal and real gas to <em>decrease</em>
<em />
I hope it helps!
(g solute/g solution)*100 = % mass/mass
30 g / 400 * 100
0,075 * 100
= 7,5% w/w
hope this helps!
The volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
<h3>Weight of one gallon of water</h3>
The weight of 1 gal of water is given as 3785 g
Mass of 8.48 x 10⁸ gal = 3785 x 8.48 x 10⁸ = 3.2 x 10¹² g
<h3>Volume of the water in cubic meters</h3>
Volume = mass/density
Volume = 3.2 x 10¹² g/1 gmL
Volume = 3.2 x 10¹² mL x 10⁻⁶ m³/mL = 3.2 x 10⁶ m³
Thus, the volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
Learn more about volume here: brainly.com/question/1972490
#SPJ1
<span>0.0292 moles of sucrose are available.
First, lookup the atomic weights of all involved elements
Atomic weight Carbon = 12.0107
Atomic weight Hydrogen = 1.00794
Atomic weight Oxygen = 15.999
Now calculate the molar mass of sucrose
12 * 12.0107 + 22 * 1.00794 + 11 * 15.999 = 342.29208 g/mol
Divide the mass of sucrose by its molar mass
10.0 g / 342.29208 g/mol = 0.029214816 mol
Finally, round the result to 3 significant figures, giving
0.0292 moles</span>