Answer: Electric field vector is created by an electric force of a charged particle.
Explanation: The direction of the field vector can be determined by applying Coulomb’s Law which explains the electric force between charge particles. If q is positive the force is repulsive, to a test charge ( which is positive always ) and if q is negative the force is attractive to a test charge.
If resistor A, B and C are arranged in series, same current will flow in all the resistors and 2A will flow is resistor C.
<h3>What is series circuit?</h3>
This is the type of circuit arrangement in which the resistors are arranged in series order.
In this type of circuit arrangement, same current flows in every component of the circuit.
Thus, if resistor A, B and C are arranged in series, same current will flow in all the resistors and 2A will flow is resistor C.
Learn more about series circuit here: brainly.com/question/19865219
#SPJ1
Answer:
B
Explanation:
bIrish Kaleb picked Lucian usual
Answer:
v = 9.04 m / s
Explanation:
For this exercise we can use the relation that the work of the non-conservative force (friction) is equal to the variation of the mechanical energy of the system.
W = Em_f - Em₀ (1)
Starting point. Lower slope
Em₀ = K = ½ m v²
highest point. Where is the skier at a height h
Em_f = U = m g h
The work of rubbing
W = -fr x
the negative sign is because the friction force opposes the movement.
Let's set a reference system where the x axis is parallel to the slope and the y axis is perpendicular
let's use trigonometry to break down the weight
cos θ = W_y / W
sin θ = Wₓ / W
W_y = W cos θ
Wₓ = W sin θ
Y axis
N - Wₓ = 0
N = mg sin θ
X axis
fr = m a
the friction force has the expression
fr = μ N
fr = μ mg sin θ
we look for the job
W = - μ mg sin θ x
where x is the distance along the slope
we substitute in 1
-μ mg sin θ x = mg h - ½ m v²
let's use trigonometry to find the distance x
tan 30 = h / x
x = h / tan 30
we substitute
-
= m gh - ½ m v²
we use
tan 30 = sin30 / cos30
v² = 2g h + 2 μ g h cos 30
v = 
let's calculate
v = 
v = 9.04 m / s