1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
7

An 8 Ω resistor is connected to a 6 V battery and another resistor in series. If the current in the circuit is 0.5 A, what is th

e resistance of the other resistor?
Physics
1 answer:
Semmy [17]3 years ago
4 0
8+R=V/I
8+R=6/0.5=12 ohm
then R=4 ohm
You might be interested in
**100 points** PLEASE ANSWER IN 3 PARAGRAPHS
Deffense [45]

Answer:

In the previous section, we defined circular motion. The simplest case of circular motion is uniform circular motion, where an object travels a circular path at a constant speed. Note that, unlike speed, the linear velocity of an object in circular motion is constantly changing because it is always changing direction. We know from kinematics that acceleration is a change in velocity, either in magnitude or in direction or both. Therefore, an object undergoing uniform circular motion is always accelerating, even though the magnitude of its velocity is constant.

You experience this acceleration yourself every time you ride in a car while it turns a corner. If you hold the steering wheel steady during the turn and move at a constant speed, you are executing uniform circular motion. What you notice is a feeling of sliding (or being flung, depending on the speed) away from the center of the turn. This isn’t an actual force that is acting on you—it only happens because your body wants to continue moving in a straight line (as per Newton’s first law) whereas the car is turning off this straight-line path. Inside the car it appears as if you are forced away from the center of the turn. This fictitious force is known as the centrifugal force. The sharper the curve and the greater your speed, the more noticeable this effect becomes.

Figure 6.7 shows an object moving in a circular path at constant speed. The direction of the instantaneous tangential velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity; in this case it points roughly toward the center of rotation. (The center of rotation is at the center of the circular path). If we imagine Δs becoming smaller and smaller, then the acceleration would point exactly toward the center of rotation, but this case is hard to draw. We call the acceleration of an object moving in uniform circular motion the centripetal acceleration ac because centripetal means center seeking.

hope it helps! stay safe and tell me if im wrong pls :D

(brainliest if you want, or if its right pls) :)

4 0
2 years ago
Town A lies 15 km north of town B. Town C lies 10 km west of town A. A small plane flies directly from town B to town C. What is
ZanzabumX [31]

Answer:

the correct answer is b

Explanation:

5 0
3 years ago
In the Bohr model of the hydrogen atom, an electron({rm mass};m=9.1; times 10^{ - 31;}{rm kg}) orbits a proton at a distance of
max2010maxim [7]

Answer:

n=6.56×10¹⁵Hz

Explanation:

Given Data

Mass=9.1×10⁻³¹ kg

Radius distance=5.3×10⁻¹¹m

Electric Force=8.2×10⁻⁸N

To find

Revolutions per second

Solution

Let F be the force of attraction

let n  be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by

F=mω²r......................where ω=2π  n

F=m4π²n²r...............eq(i)

as the values given where

Mass=9.1×10⁻³¹ kg

Radius distance=5.3×10⁻¹¹m

Electric Force=8.2×10⁻⁸N

we have to find n from eq(i)

n²=F/(m4π²r)

n^{2} =\frac{8.2*10^{-8} }{9.11*10^{-31}* 4\pi^{2} *5.3*10^{-11}  }\\ n^{2}=4.31*10^{31}\\ n=\sqrt{4.31*10^{31}}\\ n=6.56*10^{15}Hz

8 0
3 years ago
The Heaviside function H is defined by H(t)={0 if t<0, 1 if t≥0 It is used in the study of electric circuits to represent the
Studentka2010 [4]

Answer:

V(t)= 240V* H(t-5)

Explanation:

The heaviside function is defined as:

H(t) =1 \quad t\geq 0\\H(t) =0 \quad t

so we see that the Heaviside function "switches on" whent=0, and remains switched on when t>0

If we want our heaviside function to switch on when t=5, we need the argument to the heaviside function to be 0 when t=5

Thus we define a function f:

f(t) = H(t-5)

The -5 term inside the heaviside function makes sure to displace the function 5 units to the right.

Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (H(t-5) =1 when t\geq 5, so it becomes just a 1, which we can safely ignore.)

Therefore our final result is:

V(t)= 240V* H(t-5)

I have made a sketch for you, and added it as attachment.  

5 0
3 years ago
What is the main function of chloroplasts?
dangina [55]

Answer:

C

To convert sunlight into usable sugars

(

Explanation:

6 0
3 years ago
Other questions:
  • Snowboarder Jump—Energy and Momentum
    9·1 answer
  • Which factors has the largest influence on the formation and direction of the asiatic monsoons?
    15·1 answer
  • What term in physical science is defined as a change in position
    11·1 answer
  • g Radiation of an unknown wavelength is used in a photoelectric effect experiment on a sodium surface. The maximum kinetic energ
    15·1 answer
  • NEEEEEEEEEEEEEEEEEEEEEEEEEEED !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    9·2 answers
  • The rotation period for Venus is___days. (pls help!)<br> 365<br> 186<br> 512<br> 243
    11·2 answers
  • The magnitude of the electrical force acting between a +2.4 x 10- C charge and a +1.8 x 10- C charge that are separated
    5·1 answer
  • A well labelled diagram of outdoor thermometer​
    5·1 answer
  • When should scientific claims be questioned?
    6·1 answer
  • Thinking about planck's law, which star would give off the most orange light?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!