Mac and Keena are experimenting with pulses on a rope. Mac vibrates one end up and down while Keena holds the other end. This creates a pulse which they observe moving from end to end. How does the position of a point on the rope before the start of the pulse compare to its position after the pulse passes? Explain your reasoning.
Answer:
February. we will be in the future types, I
Explanation:
Collins the best year fixed come in handy when but it at a very nice relaxing. it will not have the option?
Answer:
a) 
b) 
Explanation:
The frequency of the
harmonic of a vibrating string of length <em>L, </em>linear density
under a tension <em>T</em> is given by the formula:

a) So for the <em>fundamental mode</em> (n=1) we have, substituting our values:

b) The <em>frequency difference</em> between successive modes is the fundamental frequency, since:

X-rays are high energy electrons
that can cause damage when exposed under extreme conditions. The best technology
that can block it is using a lightweight type of metal foam. It can take in
high energy collisions which also exhibits high forces. it does not only block
x-rays but also, neutron radiation and gamma rays.
Answer:
the energy required for the extension is 12.25 J
Explanation:
Given;
force constant of trampoline spring, k = 800 N/m
extension of trampoline spring, x = 17.5 cm = 0.175 m
The energy required for the extension is calculated as;
E = ¹/₂kx²
E = 0.5 x 800 x 0.175²
E = 12.25 J
Therefore, the energy required for the extension is 12.25 J