Answer: sum of the pressure of the two gases present.
Explanation:
According to Dalton's law, the total pressure of a mixture of gases is the sum of individual pressures exerted by the constituent gases.
For example if there are there are two gases hydrogen and oxygen with individual pressure of 30 and 20 atm each. Then the total pressure in the container will be:
Thus

Thus if two gases are present in a container, the total pressure in the container is equal to sum of the pressure of the two gases present.
Answer: A) inherited traits
Explanation: theses are all traits that plants can inherit from its parents
Answer: The mole ratio of oxygen to pentane for the combustion of pentane is 8 : 1.
Explanation: The given reaction is a type of combustion reaction.
Combustion reaction is a reaction in which a hydrocarbon reacts with oxygen gas to produce water and carbon dioxide gas.
For the reaction of pentane with oxygen, the balanced equation would be:

In the reaction, 1 mole of
reacts with 8 moles of
gas.
Thus giving us the mole ratio as
Oxygen : Pentane = 8 : 1
Answer: B. Elements are represented by chemical formulas.
Elements are pure substances, which means that they cannot be broken down into simpler substances. The element is the most basic substance that exists, breaking it down further means breaking it down into protons, neutrons, and electrons, which is no longer a substance.
Elements have chemical properties that allow them to form different types of bonds with other elements.
However, elements *alone* are not represented by their chemical formulas. Only chemical bonds or ions are represented by a chemical formula.
Answer:
0.271 M NO₃⁻
Explanation:
To find the molarity of the nitrate ion (NO₃⁻), you need to (1) convert grams to moles (via molar mass), then (2) convert moles Al(NO₃)₃ to moles NO₃⁻, then (3) convert mL to L, and then (4) calculate the molarity. When (Al(NO₃)₃) dissolves in water, it dissociates into 3 nitrate ions. The final answer should have 3 sig figs.
(Steps 1 + 2)
Molar Mass (Al(NO₃)₃): 26.982 g/mol + 3(14.007 g/mol) + 9(15.998 g/mol)
Molar Mass (Al(NO₃)₃): 212.985 g/mol
1 Al(NO₃)₃ = 1 Al³⁺ and 3 NO₃⁻
6.25 g Al(NO₃)₃ 1 mole 3 moles NO₃⁻
------------------------- x ----------------- x ----------------------- = 0.0880 moles NO₃⁻
212.985 g 1 mole Al(NO₃)₃
(Steps 3 + 4)
325.0 mL / 1,000 = 0.3250 L
Molarity = moles / volume
Molarity = 0.0880 moles / 0.3250 L
Molarity = 0.271 M