Answer:

Explanation:
q = Charge in the potassium ion = 
e = Charge of electron = 
= Change in potential = 
Change in electric potential is given by

The energy is 
Answer:
A fire hose must be able to shoot water to the top of a building 35.0 m tall ... Water enters this hose at a steady rate of 0.500 m3/s and shoots out of a round nozzle. ... I know that Flow rate=0.500 m3/s=A*V. I know the pressure needed to ... The first equation has no potential while the second has no kinetic.
Explanation:
Answer:
6.6 atm
Explanation:
Using the general gas law
P₁V₁/T₁ = P₂V₂/T₂
Let P₂ be the new pressure
So, P₂ = P₁V₁T₂/V₂T₁
Since V₂ = 2V₁ , P₁ = 12 atm and T₁ = 273 + t where t = temperature in Celsius
T₂ = 273 + 2t (since its Celsius temperature doubles).
Substituting these values into the equation for P₂, we have
P₂ = P₁V₁(273 + 2t)/2V₁(273 + t)
P₂ = 12(273 + 2t)/[2(273 + t)]
P₂ = 6(273 + 2t)/(273 + t)]
assume t = 30 °C on a comfortable spring day
P₂ = 6(273 + 2(30))/(273 + 30)]
P₂ = 6(273 + 60))/(273 + 30)]
P₂ = 6(333))/(303)]
P₂ = 6.6 atm
Answer:
DMM should be placed in the series combination with the circuit.
Explanation:
DMM is the digital multi meter. It can measure the voltage, current and resistance at a time.
- While measuring the current with the DMM you must be ensure that the DMM should be connected with the circuit in series combination. So that it will give the resultant current accurately.
- While measuring the voltage the observer should check the open probes.
Answer:
The speed is
and the direction is heading north.
Explanation:
In collisions the force exerted by the objects that collide is higher enough than the external forces that we can neglect that external forces, with that assumption we can use the conservation fo momentum law that states, final total momentum (pf) is equal initial total momentum (pi) if there’re not external forces or they are small enough to be neglected. Mathematically:

The total momentum is the sum of the momentum of each of the bodies we're dealing, in our case the moment of each car, then:

with pn the momentum of the 1000kg car heading north and ps the 800kg car heading south. Momentum is defined as mass times velocity, then:
(1)
It's important to note that when we talk about momentum and velocity direction matters, so we're are going to choose a system of reference where quantities pointing north are positive and pointing south are negative. So, the initial velocity of 1000 kg car is vni=5 m/s, initial velocity of 800 kg car is vsi=-4 m/s and the final velocity of 1000 kg car is vnf=-1 m/s. Now we can solve (1) for vsf and use the values we already have:

Because the sign is positive the direction is to heading north.