Answer:
Bi (Bismuth)
Ag (Silver)
Li (Lithium)
Explanation:
Xe (Xenon) and I (Iodine) are non-metals. They cannot from a metallic bond because metallic bonds are bonds between metals only.
Answer:
D. 1.48atm
Explanation:
Van der waals equation is given as:
(P +an²/v²) (v - nb) = nRT
Where;
P = pressure (atm)
V = volume (L)
R = gas constant (0.0821 Latm/molK)
a and b = gas constant specific to each gas
T = temperature (K)
n = number of moles
According to the given information; V = 22.4L, T = 0.00°C (273.15K), R = 0.0821 Latm/molK, a = 6.49L^2-atm/mol^2, b = 0.0562 L/mol, n = 1.5mol
Hence;
(P + 6.49 × 1.5²/22.4²) (22.4 - 1.5×0.0562) = 1.5 × 0.0821 × 273.15
(P + 6.49 × 2.25/501.76) (22.4 - 0.0843) = 33.638
(P + 0.0291) (22.316) = 33.638
22.316P + 0.649 = 33.638
22.316P = 33.638 - 0.649
22.316P = 32.989
P = 32.989/22.316
P = 1.478
P = 1.48atm
Answer:
<span>ρ≅13.0⋅g⋅m<span>L<span>−1</span></span></span> = <span>13.0⋅g⋅c<span>m<span>−3</span></span></span>
Explanation:
<span>Density=<span>MassPer unit Volume</span></span> = <span><span>75.0⋅g</span><span><span>(36.5−31.4)</span>⋅mL</span></span> <span>=??g⋅m<span>L<span>−1</span></span></span>
Note that <span>1⋅mL</span> = <span>1⋅c<span>m<span>−3</span></span></span>; these are equivalent units of volume;
i.e. <span>1⋅c<span>m3</span></span> = <span>1×<span><span>(<span>10<span>−2</span></span>⋅m)</span>3</span>=1×<span>10<span>−6</span></span>⋅<span>m3</span>=<span>10<span>−3</span></span>⋅L=1⋅mL</span>.
The answers are in the attached file
Increasing the temperature of gas will probably ruin whatever it’s in. Such as a car, the increase of temperature will ruin the car price by peice.