The volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
<h3>How to calculate volume?</h3>
The volume of a solution can be calculated by dividing the mass by the density. That is;
Volume = mass/density
According to this question, a soft drink contains 12.1% sucrose (C12H22O11) by mass. This means that the mass of the sucrose is
12.1/100 × 102.5 = 12.40g of sucrose
Volume = 12.40g ÷ 1.04g/mL
Volume = 11.93mL
Therefore, the volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
Learn more about volume at: brainly.com/question/1578538
It’s a polyatomic and it has a negative charge. It’s located in the nucleus of the atom, along with the protons.
The two chemical elements that make up the <span>majority of our sun is :
"Hydrogen" and "Helium"
Hope this helps!</span>
Answer:
No precipitate is formed.
Explanation:
Hello,
In this case, given the dissociation reaction of magnesium fluoride:

And the undergoing chemical reaction:

We need to compute the yielded moles of magnesium fluoride, but first we need to identify the limiting reactant for which we compute the available moles of magnesium chloride:

Next, the moles of magnesium chloride consumed by the sodium fluoride:

Thus, less moles are consumed by the NaF, for which the moles of formed magnesium fluoride are:

Next, since the magnesium fluoride to magnesium and fluoride ions is in a 1:1 and 1:2 molar ratio, the concentrations of such ions are:
![[Mg^{2+}]=\frac{3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =3.75x10^{-4}M](https://tex.z-dn.net/?f=%5BMg%5E%7B2%2B%7D%5D%3D%5Cfrac%7B3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D3.75x10%5E%7B-4%7DM)
![[F^-]=\frac{2*3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =7.5x10^{-4}M](https://tex.z-dn.net/?f=%5BF%5E-%5D%3D%5Cfrac%7B2%2A3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D7.5x10%5E%7B-4%7DM)
Thereby, the reaction quotient is:

In such a way, since Q<Ksp we say that the ions tend to be formed, so no precipitate is formed.
Regards.
Answer:
When salt is mixed with water, the salt dissolves because the covalent bonds of water are stronger than the ionic bonds in the salt molecules. ... Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together.
Explanation: