Answer:
29.5 m/s
Explanation:
Volumetric flowrate = (average velocity of flow) × (cross sectional area)
Volumetric flowrate = 0.111 liters/s = 0.000111 m³/s
Cross sectional Area of flow = πr²
Diameter = 0.00579 m,
Radius, r = d/2 = 0.002895 m
A = π(0.002895)² = 0.0000037629 m²
Velocity of flow = (volumetric flow rate)/(cross sectional Area of flow)
v = 0.000111/0.0000037629
v = 29.5 m/s
Answer:
por el Principio de Homogeneidad Dimensional y el uso de operaciones de adición y sustracción.
Explanation:
Por el Principio de Homogeneidad Dimensional, A, B, C y D deben tener las mismas magnitudes físicas para la realización de operaciones de adición y sustracción. Es decir:
, donde ![[A] = [B] = [C] = [D]](https://tex.z-dn.net/?f=%5BA%5D%20%3D%20%5BB%5D%20%3D%20%5BC%5D%20%3D%20%5BD%5D)
Answer: west
Explanation: the sunset always sets in the west.
I am pretty sure the answer to your question is B
Answer:
240 kPa
Explanation:
The ideal gas law states:

where
p is the gas pressure
V is the gas volume
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
For a fixed amount of gas, n and R are constant, so we can rewrite the equation as

For the gas in the problem, which undergoes a transformation, this can be rewritten as

where we have:
is the initial pressure
is the initial volume
is the initial temperature
is the final pressure
is the final volume
is the final temperature
Solving the formula for p2, we find the final pressure of the gas:
