<span>The moon's orbit around the Earth will advance in one day:
1°
13° correct answer
27°
29°</span><span />
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the object is 
The unstressed length of the string is 
The length of the spring when it is at equilibrium is 
The initial speed (maximum speed)of the spring when given a downward blow 
Generally the maximum speed of the spring is mathematically represented as

Here A is maximum height above the floor (i.e the maximum amplitude)
and
is the angular frequency which is mathematically represented as

So

=> 
Gnerally the length of the compression(Here an assumption that the spring was compressed to the ground by the hammer is made) by the hammer is mathematically represented as

=> 
=> 
Generally at equilibrium position the net force acting on the spring is

=> 
=> 
So

=> 
Answer:
Image distance is -52.5 cm
Image is virtual and forms on the same side of the lens and upright image is formed.
Explanation:
u = Object distance
v = Image distance
f = Focal length = 35
m = Magnification = 2.5

Lens equation


Image distance is -52.5 cm
Image is virtual and forms on the same side of the lens and upright image is formed.
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.