Point C would the greatest
We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,

But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.
It is TRUE, Force is proportional to the product of the masses and inversely proportional to the square of the distance between them.
Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

if i am changing velocity, i must also have <u>acceleration</u> and a net <u>force</u>
<h2>
<u>Newton's</u><u> </u><u>first</u><u> </u><u>law</u><u> </u><u>of</u><u> </u><u>motio</u><u>n</u></h2>
- Newton's first law of motion states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
According to Newton's first law of motion, without a force acting on an object, its velocity does not change. The net force acts on an object to change its velocity and cause acceleration.
Read more about velocity:
brainly.com/question/4931057