Answer: the pH of the solution is 4.52
Explanation:
Consider the weak acid as Ha, it is dissociated as expressed below
HA H⁺ + A⁻
the Henderson -Haselbach equation can be expressed as;
pH = pKa + log( [A⁻] / [HA])
the weak acid is dissociated into H⁺ and A⁻ ions in the solution.
now the conjugate base of the weak acid HA is
HA(aq) {weak acid} H⁺(aq) + A⁻(aq) {conjugate base}
so now we calculate the value of Kₐ as well as pH value by substituting the values of the concentrations into the equation;
pKₐ = -logKₐ
pKₐ = -log ( 7.4×10⁻⁵ )
pKₐ = 4.13
now thw pH is
pH = pKₐ + log( [A⁻] / [HA])
pH = 4.13 + log( [0.540] / [0.220])
pH = 4.13 + 0.3899
pH = 4.5199 = 4.52
Therefore the pH of the solution is 4.52
Answer:
This question is incomplete
Explanation:
The question is incomplete because of the absence of the table but since the question says there are data from an investigation about a plant growth and five other plants (making six) of the same type, the best way to display this type of data for analyst is to use the grouped bar chart. <u>The grouped bar chart will display the data obtained (from an investigation on plant growth) from different students on each of the six plants (of the the same type)</u>.
Colours are usually used to identify the bars (of a group) or could be used to separate the group from other groups but in this case, colours are better used to identify the bars of a group.
Answer:
They form a covalent bond
It is on a plate boundary so there are a lot of volcanoes in that area. All the volcanoes form a "ring" around the plate boundary.