You want to divide by avagadros number (6.22 x 10^23). This will cancel the atoms unit and give moles, moles of Iridium. Now you want to calculate the atomic mass of Iridium which is in units of grams per mole. Multiply these two numbers and the moles will cancel giving you grams.
Setting up a dimension analysis type of thing helps tremendously. See what you have to cancel in order to get what you want. We canceled the atoms, then we canceled the moles, and then we got grams.
Answer: Methylamine when heated with an alcoholic solution of KOH and CHCl3CHCl3, it gives an offensive smell of methyl cyanide.
Explanation:
Answer:
b. 17,190
Explanation:
Using the formula for C-14 dating,

where Present Value N =1/8 of Parent Sample
Initial Value,
=1
Half Life,
=5730 years

=17,190
Therefore the fossil is about 17190 years old.
Answer:
1. C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. V = 596L
Explanation:
Butane (C₄H₁₀) reacts with oxygen (O₂) to produce carbon dioxide (CO₂) and water (H₂O) thus:
C₄H₁₀ + O₂ → CO₂ + H₂O
1. The balanced chemical equation is:
C₄H₁₀ + ¹³/₂O₂ → 4CO₂ + 5H₂O
2. 0,360kg of butane are:
360g×
=<em>6,19moles of butane</em>
These moles of butane are:
6,19moles of butane×
= <em>24,8 moles CO₂</em>
Using V=nRT/P
Where:
n are moles (24,8 moles CO₂); R is gas constant (0,082atmL/molK); T is temperature, 20°C (293,15K); and P is pressure (1atm).
Volume (V) is:
<em>V = 596L</em>
I hope it helps!
Answer:
wax, candlewick, and oxygen
Explanation:
The burning of the candle is both a physical as well as a chemical change. The reactants are the substances or the raw materials that are required for a reaction to the process. In the process of burning a candle, the reactants are the fuel which includes wax and wick, and oxygen which is found in the air. The products found at the end of the reaction are carbon dioxide and water vapor.