The wording of your question doesn't quite make sense, but a mole of an element has the same mass in grams as a single atom of that element has in amu. The mole is defined as 6.02 x10^22 things, whether they be atoms or molecules or even moles! 6.02x10^22 atoms of carbon has a mass of 12.01 g, and a single atom of carbon has a mass of 12.01 amu. Hope this helps!
Probably Fresh vegetables, it can rot out, that’d be my guess, it’s not canned
Assuming that the contents of the chamber ar ideal gases. We can use the relation PV=nRT. At a constant
temperature and number of moles of the gas the product of PV is equal to some
constant. At another set of condition of temperature, the constant is still the
same. Calculations are as follows:
P1V1 =P2V2
P2 = (1)(450)/ 48
P2 = 9.375 atm
Answer: C. The number of atoms of each element is the same on each side of the equation.
Explanation:
The Law of Conservation of Matter shows that it is not possible for matter to either be created nor for it to be destroyed so the number of atoms of each element on the reactant side of the equation must equal the number of atoms in each element on the product side of the equation.
This is why the following equation is incomplete:
H₂ + O₂ ⇒ H₂O
The oxygen atoms are not the same on either side.
Equation will therefor have to be balanced which will make it:
2H₂ + O₂ ⇒ 2H₂O
Notice now that atoms are the same on both sides.