Enthalpy is energy of bonds broken - energy of bonds formed. Here, the NH3 and O2 are broken and H2O and NO are formed. So the energy to break the NH3 bonds is 3 times the amount of energy it takes to break a N-H single bond (because there are three of them in a NH3 molecule) and then multiplied by 4 because there are four particles.
So the energy of the bonds broken is 12x the energy to break a N-H single bond plus 5x the amount of energy to break an O—O double bond (you don’t multiply this by anything because in each O2 molecule there is only one bond).
The energy of the bonds formed is 6*2 = 12 Times the amount of energy for a O-H single bond plus 4 times the amount of energy required to break a N—O double bond.
Subtract energy of bonds broken - energy of bonds formed and this is the change in enthalpy.
To know what type of bond it is, draw the Lewis structure.
Answer:
there is no shift in the state
Explanation:
The correct answer is - There is no shift in the state.
Reason -
If K > Q, a reaction will proceed forward, converting reactants into products. If K < Q, the reaction will proceed in the reverse direction, converting products into reactants. If Q = K then the system is already at equilibrium.
where Q, is the reaction Quotient
The origins of the word fossil are French and Latin
Ir = [Xe] 4f14 5d7 6s2
<span>Rn = [Xe] 4f14 5d10 6s2 6p6 </span>
<span>Fe = [Ar] 3d6 4s2 </span>
<span>Pa = [Rn] 5f2 6d1 7s2 </span>
<span>Y = [Kr] 4d1 5s2 </span>
<span>Re = [Xe] 4f14 5d5 6s2 </span>
<span>So only Rhenium (Re) has an electronic configuration where the d orbital has 5 electrons in it.</span>
Low frequency waves are far apart