Question requires a change resulting in an increase in both forward and reverse reactions. Now lets discuss options one by one and see there impact on rate of reactions.
1) <span>A decrease in the concentration of the reactants:
When concentration of reactant is decreased it will shift the equilibrium in Backward direction, so resulting in increasing the backward reaction and decreasing the forward direction. Hence, this option is incorrect.
2) </span><span>A decrease in the surface area of the products:
Greater the surface Area greater is the chances of collision and greater will be the rate of reaction. As the surface area of products is decreased it will not favor the backward reaction. Hence again this statement is incorrect according to given statement.
3) </span><span>An increase in the temperature of the system:
An increase in temperature will shift the reaction in endothermic side. Hence, if the reaction is endothermic, an increase in temperature will increase the rate of forward direction or if the reaction is exothermic it will increase the rate of reverse direction. Hence, this option is correct according to given statement.
4) </span><span>An increase in the activation energy of the forward reaction:
An increase in Activation energy will decrease the rate of reaction, either it is forward or reverse. So this is incorrect.
Result:
Hence, the correct answer is,"</span>An increase in the temperature of the system".
The correct option is COVALENT BONDS.
A Lewis acid is defined as a substance which accept a pair of electron while a Lewis base refers to a substance that donate an unshared pair of electrons to another chemical specie with which it shared the donated pair of electrons.
Lewis acid and Lewis base react together to form salt and water. This type of reaction is called neutralization reaction. The neutralization reaction of Lewis acid and Lewis base involves electron pairs transfer, thus, there is an increase in the number of covalent bonds during this reaction.
Remember....
mass number= atomic number + number of neutrons
If the mass number is 19 and the atomic number is 9, then the number of neutrons is 19-9 which is 10.
Answer:
1.18 × 10²⁴ particles Mg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
47.7 g Mg
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of Mg - 24.31 g/mol
<u>Step 3: Convert</u>
<u />
= 1.18161 × 10²⁴ particles Mg
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
1.18161 × 10²⁴ particles Mg ≈ 1.18 × 10²⁴ particles Mg