1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
10

The weight of an astronaut plus his space suit on the Moon is only 250 N. (a) How much does the suited astronaut weigh on Earth?

(b) What is the mass on the Moon? On Earth?
Physics
2 answers:
Juli2301 [7.4K]3 years ago
5 0
<h2>Answer:</h2>

(a) 1500N

(b) 150kg, 150kg

<h2>Explanation:</h2>

Consider the following equation from Newton's law of gravitational force between two bodies A and B;

F_{g} = m x g

<em>Where;</em>

F_{g} = gravitational force between A and B on a space (e.g moon or earth)

m = mass of A or B

g = acceleration due to gravity on the given space. (e.g moon or earth)

<em>Also;</em>

The acceleration due to gravity (g_{e}) on the earth is 6 times the acceleration due to gravity (g_{m}) on the moon. i.e

g_{e} = 6 x g_{m}

=> g_{m} = g_{e} / 6

<em>Assume in this case and;</em>

Let body A be the suited astronaut

Let body B be the moon or the earth

<em>This implies that;</em>

F_{ge} = m x g_{e}          ------------------(ii)

<em>Where;</em>

F_{ge} = gravitational force between suited astronaut and Earth on Earth = Weight of the suited astronaut on Earth.

m = mass of suited astronaut

g_{e} = acceleration due to gravity on the Earth (e.g moon or earth)

<em>And;</em>

F_{gm} = m x g_{m}           ------------------(iii)

<em>Where;</em>

F_{gm} = gravitational force between suited astronaut and the moon = Weight of the suited astronaut on the moon

m = mass of suited astronaut

g = acceleration due to gravity on the moon.

From equations (ii) and (iii)

[Remember that g_{e} = 6 x g_{m}], substitute this into equation (ii) as follows;

F_{ge} = m x 6 x g_{m}         [re-arranging]

F_{ge} = 6 x m x g_{m}         [Put F_{gm} for m x g_{m}  ]

F_{ge} = 6 x F_{gm}             ------------------(iv)

(a) To get the weight of the suited astronaut on Earth, we use equation (iv) as follows;

F_{ge} = 6 x F_{gm}  ------------------------(v)

Where;

F_{gm} = the weight of the suited astronaut on the moon = 250N

Substitute this into equation (v)

F_{ge} = 6 x 250

F_{ge} = 1500N

Therefore, the weight of the suited astronaut on the Earth is 1500N

(b)

(i) to get the mass on the moon, use equation (iii) as follows;

F_{gm} = m x g_{m}

Where;

F_{gm} = 250N and

g_{m} = g_{e} / 6             [g_{e}  = g = 10m/s²]

g_{m} = 10 / 6

g_{m} = 1.6666667m/s²

<em>Substitute these values into the equation above;</em>

250 = m x 1.6666667

Solve for m;

m = \frac{250}{1.6666667}

m = 150kg

(ii) to get the mass on the Earth, use equation (ii) as follows;

F_{ge} = m x g_{e}

Where;

F_{ge} = 1500N and g_{e}  = g = 10m/s²

<em>Substitute these values into the equation above;</em>

1500 = m x 10

Solve for m;

m = \frac{1500}{10}

m = 150kg

Therefore the masses of the suited astronaut on Moon and on Earth are the same and equal to 150kg

Evgesh-ka [11]3 years ago
3 0

Answer:

a)1500N

b)153.06kg

Explanation:

F = ma

g(moon) = is the acceleration due to gravity on the moon

g(earth) is the acceleration due to gravity on the earth

g(moon) = 1/6g(earth)

g(earth) =6g(moon)

F(gearth) = mg(earth)

               = m 6g(moon)

               = 6 × 250

               = 1500N

b) F(gearth) = mg(earth)

m = F /g

 = 1500/9.8

 = 153.06kg

You might be interested in
You and your friend are pushes hard against a stationary wall. If you push 3 times harder than your friend, then the amount of w
shtirl [24]

Answer:

Work = F * s    where s is the distance F moves

Since F is stationary, in this case, "no work" is done by either person

5 0
2 years ago
What are three things we should try to limit that we may find on a food label.
Dafna1 [17]

Answer:

Added sugars, Saturated fat, Trans fat.

Explanation:

5 0
3 years ago
Read 2 more answers
What is voltage, and what is its relationship to amperage and power?
ziro4ka [17]

Explanation:

Amperage is the unit of electric current. It describes the strength of the electric current in a circuit.

The voltage is the driving force of the current in a circuit

Power is a function of voltage and current in the circuit.

   Current is designate as I

    Voltage as V

    Power as P

  I = \frac{V}{R}

Where R is the resistance to flow of electricity

        P = I x V = \frac{V^{2} }{R}

The unit of power is watts and voltage is volts

learn more:

Voltage brainly.com/question/6949231

#learnwithBrainly

 

8 0
3 years ago
In your egg drop you want to decrease.
Ede4ka [16]

Answer:

B

Explanation:

3 0
3 years ago
Read 2 more answers
Run Gizmo: Orbital velocity is the velocity needed to make a circular orbit. Use the Gizmo to find the orbital velocity of the b
Lina20 [59]

Answer:

Hmm i need more info

Explanation:

8 0
3 years ago
Other questions:
  • A doctor examines a mole with a 15.0 cm focal length magnifying glass held 13.5 cm from the mole. Where is the image? what is it
    15·1 answer
  • A shell is fired from the ground with an initial speed of 1.51 ✕ 10^3 m/s at an initial angle of 32° to the horizontal. (a) Negl
    12·2 answers
  • Hanna tosses a ball straight up with enough speed to remain in the air for several seconds?
    8·2 answers
  • 1. A friend measures the length of the school
    9·1 answer
  • There is a large box and a small box on a table. The same force is applied to both boxes. The large box moves two feet and the s
    8·2 answers
  • Choose two forces and compare and contrast these forces. These must be different forces than used in the prior question. Provide
    14·1 answer
  • A car driving at a constant speed of 64 mi/h travels 68 miles. How many hours did this take?
    15·1 answer
  • What is the product of mass and velocity of an object?
    5·2 answers
  • ?
    9·1 answer
  • Objects 1 and 2 attract each other with a electrostatic force of 72.0 units. if the charge of object 1 is halved, then the elect
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!