1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
10

The weight of an astronaut plus his space suit on the Moon is only 250 N. (a) How much does the suited astronaut weigh on Earth?

(b) What is the mass on the Moon? On Earth?
Physics
2 answers:
Juli2301 [7.4K]3 years ago
5 0
<h2>Answer:</h2>

(a) 1500N

(b) 150kg, 150kg

<h2>Explanation:</h2>

Consider the following equation from Newton's law of gravitational force between two bodies A and B;

F_{g} = m x g

<em>Where;</em>

F_{g} = gravitational force between A and B on a space (e.g moon or earth)

m = mass of A or B

g = acceleration due to gravity on the given space. (e.g moon or earth)

<em>Also;</em>

The acceleration due to gravity (g_{e}) on the earth is 6 times the acceleration due to gravity (g_{m}) on the moon. i.e

g_{e} = 6 x g_{m}

=> g_{m} = g_{e} / 6

<em>Assume in this case and;</em>

Let body A be the suited astronaut

Let body B be the moon or the earth

<em>This implies that;</em>

F_{ge} = m x g_{e}          ------------------(ii)

<em>Where;</em>

F_{ge} = gravitational force between suited astronaut and Earth on Earth = Weight of the suited astronaut on Earth.

m = mass of suited astronaut

g_{e} = acceleration due to gravity on the Earth (e.g moon or earth)

<em>And;</em>

F_{gm} = m x g_{m}           ------------------(iii)

<em>Where;</em>

F_{gm} = gravitational force between suited astronaut and the moon = Weight of the suited astronaut on the moon

m = mass of suited astronaut

g = acceleration due to gravity on the moon.

From equations (ii) and (iii)

[Remember that g_{e} = 6 x g_{m}], substitute this into equation (ii) as follows;

F_{ge} = m x 6 x g_{m}         [re-arranging]

F_{ge} = 6 x m x g_{m}         [Put F_{gm} for m x g_{m}  ]

F_{ge} = 6 x F_{gm}             ------------------(iv)

(a) To get the weight of the suited astronaut on Earth, we use equation (iv) as follows;

F_{ge} = 6 x F_{gm}  ------------------------(v)

Where;

F_{gm} = the weight of the suited astronaut on the moon = 250N

Substitute this into equation (v)

F_{ge} = 6 x 250

F_{ge} = 1500N

Therefore, the weight of the suited astronaut on the Earth is 1500N

(b)

(i) to get the mass on the moon, use equation (iii) as follows;

F_{gm} = m x g_{m}

Where;

F_{gm} = 250N and

g_{m} = g_{e} / 6             [g_{e}  = g = 10m/s²]

g_{m} = 10 / 6

g_{m} = 1.6666667m/s²

<em>Substitute these values into the equation above;</em>

250 = m x 1.6666667

Solve for m;

m = \frac{250}{1.6666667}

m = 150kg

(ii) to get the mass on the Earth, use equation (ii) as follows;

F_{ge} = m x g_{e}

Where;

F_{ge} = 1500N and g_{e}  = g = 10m/s²

<em>Substitute these values into the equation above;</em>

1500 = m x 10

Solve for m;

m = \frac{1500}{10}

m = 150kg

Therefore the masses of the suited astronaut on Moon and on Earth are the same and equal to 150kg

Evgesh-ka [11]3 years ago
3 0

Answer:

a)1500N

b)153.06kg

Explanation:

F = ma

g(moon) = is the acceleration due to gravity on the moon

g(earth) is the acceleration due to gravity on the earth

g(moon) = 1/6g(earth)

g(earth) =6g(moon)

F(gearth) = mg(earth)

               = m 6g(moon)

               = 6 × 250

               = 1500N

b) F(gearth) = mg(earth)

m = F /g

 = 1500/9.8

 = 153.06kg

You might be interested in
9. Consider the elbow to be flexed at 90 degrees with the forearm parallel to the ground and the upper arm perpendicular to the
mojhsa [17]

Answer:

Moment about SHOULDER  ∑ τ = 3.17 N / m,

Moment respect to ELBOW   Στ= 2.80 N m

Explanation:

For this exercise we can use Newton's second law relationships for rotational motion

         ∑ τ = I α

   

The moment is requested on the elbow and shoulder at the initial instant, just when the movement begins.

They indicate the angular acceleration, for which we must look for the moments of inertia of the elements involved

The mass of the forearm with the included weight is approximately 2.3 kg, with a length of about 50cm

Moment about SHOULDER

          ∑ τ = I α

           I = I_forearm + I_sphere

the forearm can be approximated as a fixed bar at one end

            I_forearm = ⅓ m L²

the moment of inertia of the mass in the hand, let's approach as punctual

            I_mass = m L²

we substitute

           ∑ τ = (⅓ m L² + M L²) α

let's calculate

          ∑ τ = (⅓ 2.3 0.5² + 0.5 0.5²) 10

           ∑ τ = 3.17 N / m

Moment with respect to ELBOW

In this case, the arm exerts an upward force (muscle) that is about 3 cm from the elbow

         Στ = I α

         I = I_ forearm + I_mass

         I = ⅓ m (L-0.03)² + M (L-0.03)²

         

let's calculate

        i = ⅓ 2.3 0.47² + 0.5 0.47²

        I = 0.2798 Kg m²

        Στ = 0.2798 10

        Στ= 2.80 N m

3 0
3 years ago
Ramesh announced in class: ''Yesterday I had fever and my body temperature was 100 degrees.'' Ravi said: ''We learnt in the last
pogonyaev

Answer:

D. Ramesh and Ravi are correct, but they are using different measurement scales.

\Huge{\underline{\textrm{Explanation}}}Explanation

Here, Ravi says that his body temperature is 100 degrees, but does not mention that whether it is 100 degrees Celsius or 100 degrees Fahrenheit. When the temperature of a human body is more than 100.4 degree Fahrenheit (38°C), or near to it, the person is considered to have fever.

The boiling point of water is 100 degrees Celsius and not 100 degrees Fahrenheit.

Thus, they both are using different measurement scales.

7 0
2 years ago
If 2 objects had the same momentum, what must be true about the mass of the object that traveled the fastest?
julsineya [31]

Yes, the above-given statement is true

<u>Explanation:</u>

  • The product of the mass x the velocity will be the same for both. Momentum is the action of a body with a particular mass through space and there is the conservation of momentum.
  • Momentum is described as the mass of the object multiplied by its velocity.
  • <u>Momentum (p) = Mass (M) * Velocity (v)</u>
  • Therefore for two objects with many masses to have a similar momentum, then the lighter one has to be moving quicker than the heavier object.

4 0
3 years ago
Please help me! Uniform acceleration problem sheet:
Brrunno [24]

From the calculation, the value of the acceleration is 5.8 m/s^2.

<h3>What is uniform acceleration?</h3>

The term uniform acceleration refers to a situation in which the velocity increases by equal amounts in equal time intervals.

Given the fact that the car started from rest and reached a velocity of  780.34 mph or 348.84 m/s in 1 minute of 60 seconds;

v = u + at

a = v/t

a = 348.84 m/s/ 60 seconds

a = 5.8 m/s^2

Learn more about acceleration:brainly.com/question/12550364?

#SPJ1

7 0
2 years ago
Epithelial tissues often form the lining of organs and secrete substances such as digestive enzymes.
krek1111 [17]

Answer:

ohh yes. answer is true

6 0
3 years ago
Read 2 more answers
Other questions:
  • The drag on a pitched baseball can be surprisingly large. Suppose a 145 g baseball with a diameter of 7.4 cm has an initial spee
    15·1 answer
  • How does the kinetic energy of an object relate to its mass and velocity?
    14·1 answer
  • Reducing, reusing, and recycling in your office is likely to _______.
    7·1 answer
  • The pressure of moving air is callled
    12·1 answer
  • Dynamo converts the
    7·2 answers
  • Three charges, Q1, Q2, and Q3 are located in a straight line. The position of Q2 is 0.301 m to the right of Q1. Q3 is located 0.
    10·1 answer
  • When we add or remove energy from a substance, what kind of changes can we observe? Can they happen at the same time ?
    5·1 answer
  • The force F shown in Figure 4.30 has a moment of 40 Nm about the pivot. Calculate the magnitude
    15·1 answer
  • Which of the following is true of ligand gated sodium ion channels neurons?
    7·1 answer
  • 1. Gwen exerts a 16 N horizontal force as she pulls a 32N sled across a cement
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!