1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
10

The weight of an astronaut plus his space suit on the Moon is only 250 N. (a) How much does the suited astronaut weigh on Earth?

(b) What is the mass on the Moon? On Earth?
Physics
2 answers:
Juli2301 [7.4K]3 years ago
5 0
<h2>Answer:</h2>

(a) 1500N

(b) 150kg, 150kg

<h2>Explanation:</h2>

Consider the following equation from Newton's law of gravitational force between two bodies A and B;

F_{g} = m x g

<em>Where;</em>

F_{g} = gravitational force between A and B on a space (e.g moon or earth)

m = mass of A or B

g = acceleration due to gravity on the given space. (e.g moon or earth)

<em>Also;</em>

The acceleration due to gravity (g_{e}) on the earth is 6 times the acceleration due to gravity (g_{m}) on the moon. i.e

g_{e} = 6 x g_{m}

=> g_{m} = g_{e} / 6

<em>Assume in this case and;</em>

Let body A be the suited astronaut

Let body B be the moon or the earth

<em>This implies that;</em>

F_{ge} = m x g_{e}          ------------------(ii)

<em>Where;</em>

F_{ge} = gravitational force between suited astronaut and Earth on Earth = Weight of the suited astronaut on Earth.

m = mass of suited astronaut

g_{e} = acceleration due to gravity on the Earth (e.g moon or earth)

<em>And;</em>

F_{gm} = m x g_{m}           ------------------(iii)

<em>Where;</em>

F_{gm} = gravitational force between suited astronaut and the moon = Weight of the suited astronaut on the moon

m = mass of suited astronaut

g = acceleration due to gravity on the moon.

From equations (ii) and (iii)

[Remember that g_{e} = 6 x g_{m}], substitute this into equation (ii) as follows;

F_{ge} = m x 6 x g_{m}         [re-arranging]

F_{ge} = 6 x m x g_{m}         [Put F_{gm} for m x g_{m}  ]

F_{ge} = 6 x F_{gm}             ------------------(iv)

(a) To get the weight of the suited astronaut on Earth, we use equation (iv) as follows;

F_{ge} = 6 x F_{gm}  ------------------------(v)

Where;

F_{gm} = the weight of the suited astronaut on the moon = 250N

Substitute this into equation (v)

F_{ge} = 6 x 250

F_{ge} = 1500N

Therefore, the weight of the suited astronaut on the Earth is 1500N

(b)

(i) to get the mass on the moon, use equation (iii) as follows;

F_{gm} = m x g_{m}

Where;

F_{gm} = 250N and

g_{m} = g_{e} / 6             [g_{e}  = g = 10m/s²]

g_{m} = 10 / 6

g_{m} = 1.6666667m/s²

<em>Substitute these values into the equation above;</em>

250 = m x 1.6666667

Solve for m;

m = \frac{250}{1.6666667}

m = 150kg

(ii) to get the mass on the Earth, use equation (ii) as follows;

F_{ge} = m x g_{e}

Where;

F_{ge} = 1500N and g_{e}  = g = 10m/s²

<em>Substitute these values into the equation above;</em>

1500 = m x 10

Solve for m;

m = \frac{1500}{10}

m = 150kg

Therefore the masses of the suited astronaut on Moon and on Earth are the same and equal to 150kg

Evgesh-ka [11]3 years ago
3 0

Answer:

a)1500N

b)153.06kg

Explanation:

F = ma

g(moon) = is the acceleration due to gravity on the moon

g(earth) is the acceleration due to gravity on the earth

g(moon) = 1/6g(earth)

g(earth) =6g(moon)

F(gearth) = mg(earth)

               = m 6g(moon)

               = 6 × 250

               = 1500N

b) F(gearth) = mg(earth)

m = F /g

 = 1500/9.8

 = 153.06kg

You might be interested in
If you went to a planet that had the twice the radius as Earth, but the same mass, a 1 kg pineapple would have a weight of
kicyunya [14]

Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is

<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²

where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².

The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is

<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²

<em>F</em> ≈ 9.81 N

Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.

This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of

<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²

i.e. 1/4 of the weight on Earth, which would be about 2.45 N.

7 0
3 years ago
What are the components of friction?
Tresset [83]
<h2>Answer:</h2>

<u>Friction:</u>

When an object slips on a surface, an opposing force acts between the tangent planes which acts in the opposite direction of motion. This opposing force is called Friction. Or in other words, Friction is the opposing force that opposes the motion between two surfaces.

The main component of friction are:

<u>Normal Reaction (R): </u>

Suppose a block is placed on a table in the above picture, which is in resting state, then two forces are acting on it at that time.

The first is due to its weight mg which is working from its center of gravity towards the vertical bottom.

The second one is superimposed vertically upwards by the table on the block, called the reaction force (P). This force passes through the center of gravity of the block.

Due to P = mg, the box is in equilibrium position on the table.

<u>Coefficient of friction ( </u>μ )<u>: </u>

The ratio of the force of friction and the reaction force is called the coefficient of friction.

Coefficient of friction, µ = force of friction / reaction force

μ = F / R

The coefficient of friction is volume less and dimensionless.

Its value is between 0 to 1.

<u>Advantage and disadvantage from friction force: </u>

  • The advantage of the force of friction is that due to friction, we can walk on the earth without slipping.
  • Brakes in all vehicles are due to the force of friction.
  • We can write on the board only because of the force of friction.
  • The disadvantage of this force is that due to friction, some parts of energy are lost in the machines and there is wear and tear on the machines.

<u>How to reduce friction: </u>

  • Using lubricants (oil or grease) in machines.
  • Friction can be reduced by using ball bearings etc.
  • Using a soap solution and powder.

4 0
3 years ago
Radar uses radio waves of a wavelength of 2.4 \({\rm m}\) . The time interval for one radiation pulse is 100 times larger than t
blondinia [14]

Answer:

120 m

Explanation:

Given:

wavelength 'λ' = 2.4m

pulse width 'τ'= 100T ('T' is the time of one oscillation)

The below inequality express the range of distances to an object that radar can detect

τc/2 < x < Tc/2 ---->eq(1)

Where, τc/2 is the shortest distance

First we'll calculate Frequency 'f' in order to determine time of one oscillation 'T'

f = c/λ (c= speed of light i.e 3 x 10^{8} m/s)

f= 3 x 10^{8} / 2.4

f=1.25 x  10^{8} hz.

As, T= 1/f

time of one oscillation T= 1/1.25 x  10^{8}

T= 8 x 10^{-9} s

It was given that pulse width 'τ'= 100T

τ= 100 x 8 x 10^{-9} => 800 x 10^{-9} s

From eq(1), we can conclude that the shortest distance to an object that this radar can detect:

x_{min}= τc/2 =>  (800 x 10^{-9} x 3 x 10^{8})/2

x_{min}=120m

8 0
3 years ago
Where is the safest spot in the house during a tornado, hail storm, and earthquake? Include separate answers.
USPshnik [31]

Answer:

Explanation:

in a room with no windows that way it doesnt shatter. Usually a closet... or if you have a basement.sorry but that applies to all them

4 0
3 years ago
Read 2 more answers
A car of 1400 kg is subject to multiple forces which produce an acceleration of 3.5 m/s2 directed north. Find the net force.​
Greeley [361]

Answer:

will

Explanation:

3 0
3 years ago
Other questions:
  • In a closed system, the loss of momentum of one object ________ the gain in momentum of another object.
    11·1 answer
  • Technician a says multiple discharge ignition system fires the spark plug during each of the engine's four cycle strokes. Techni
    7·1 answer
  • A baseball player throws a baseball with a velocity of 13 m/s North it is caught by a second player seven seconds later how far
    15·1 answer
  • A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. If at a particular instant and at a certain po
    15·1 answer
  • This is one of the four planets Mercury,Venus,Earth,and Mars, whose orbits lie nearest the Sun
    15·2 answers
  • A wheel with rotational inertia i is mounted on a fixed, frictionless axle. the angular speed ω of the wheel is increased from z
    14·1 answer
  • Describe kepler's contribution to the current structure of the solar system.
    8·1 answer
  • Could someone explain to me how to got the answer B, thank you very much​
    5·1 answer
  • The body mass of Asaiah is 70 Kg.
    7·1 answer
  • A copper coin resting on a piece of cardboard is placed on a beaker as shown in the diagram below. When the cardboard is rapidly
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!