Answer:
0.00129rad/s
Explanation:
The angular velocity is expressed as;
v = wr
w is the angular velocity
r is the radius
Given
v = 20,000 mph
r = 4300mi
Get w;
w = v/r
w = 20000* 0.44704/4300*1609.34
w = 8940.8/6,920,162
w = 0.00129rad/s
Hence the angular velocity generated is 0.00129rad/s
Answer:
Explanation:
The direction of propagation of electromagnetic wave
is given by the direction of vector E x B where E is electrical field , B is magnetic field .
Given Electric field = E i because it is along x axis
Magnetic field = Bj because it is along y axis
E x B = Ei x Bj
= EB k .
so direction of E x B is along k direction or z - axis so wave is propagating along z - axis .
Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
Total thermal energy is the answer to your question.