Answer:
The correct option is;
Neither A nor B
Explanation:
The location of the where the thread wears in tire that has too high inflation is at the thread pattern center due to the reduced size of the contact patch with the load of the car resting on the central portion of the tire's contact surface
When the wear occurs at the outer edges of the tire, the load of the car rests on the outer edges as the contact patch increases due to the tire being under-inflated
Camber is the slope provided in road pavement to drain off water from the road
Roads with camber has a raised middle portion and wear due to camber includes outer-edge tread wear, inner-edge tread wear and tire feathering
Answer:
heat loss per 1-m length of this insulation is 4368.145 W
Explanation:
given data
inside radius r1 = 6 cm
outside radius r2 = 8 cm
thermal conductivity k = 0.5 W/m°C
inside temperature t1 = 430°C
outside temperature t2 = 30°C
to find out
Determine the heat loss per 1-m length of this insulation
solution
we know thermal resistance formula for cylinder that is express as
Rth =
.................1
here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity
so
heat loss is change in temperature divide thermal resistance
Q = 
Q = 
Q = 4368.145 W
so heat loss per 1-m length of this insulation is 4368.145 W
Answer:
a) 
b) attached below
c) type zero system
d) k > 
e) The gain K increases above % error as the steady state speed increases
Explanation:
Given data:
Motor voltage = 12 v
steady state speed = 200 rad/s
time taken to reach 63.2% = 1.2 seconds
<u>a) The transfer function of the motor from voltage to speed</u>
let ;
be the transfer function of a motor
when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec
hence the transfer function of the motor from voltage to speed
= 
<u>b) draw the block diagram of the system with plant controller and the feedback path </u>
attached below is the remaining part of the detailed solution
c) The system is a type-zero system because the pole at the origin is zero
d) ) k > 
Answer:
Q=67.95 W
T=119.83°C
Explanation:
Given that
For air
Cp = 1.005 kJ/kg·°C
T= 20°C
V=0.6 m³/s
P= 95 KPa
We know that for air
P V = m' R T
95 x 0.6 = m x 0.287 x 293
m=0.677 kg/s
For gas
Cp = 1.10 kJ/kg·°C
m'=0.95 kg/s
Ti=160°C ,To= 95°C
Heat loose by gas = Heat gain by air
[m Cp ΔT] for air =[m Cp ΔT] for gas
by putting the values
0.677 x 1.005 ( T - 20)= 0.95 x 1.1 x ( 160 -95 )
T=119.83°C
T is the exit temperature of the air.
Heat transfer
Q=[m Cp ΔT] for gas
Q=0.95 x 1.1 x ( 160 -95 )
Q=67.95 W
90% of traffic crashes are due to driver error.
True