To solve this problem we will apply the concept related to the conservation of the Momentum. We will then start considering that the amount of initial momentum must be equal to the amount of final momentum. Considering that all the objects at the initial moment have the same initial velocity (Zero, since they start from rest) the final moment will be equivalent to the multiplication of the mass of each object by the velocity of each object, so
Initial Momentum = Final Momentum

Here,
= mass of Raft
= Mass of swimmers 1
= Mass of swimmers 2
= Initial velocity (of the three objects)
= Velocity of Raft
Replacing,

Solving for 


Therefore the velocity the rarft start to move is 0.3618m/s
Earth is a planet located in the milky way galaxy.<span />
Moles x Mol mass = mass.
<span>Having looked it up, the mol.mass of U-238 is 238.03g/mol. </span>
<span>7.50 moles x 238.03g/mol. = 1,785.23g/mol</span>
Answer:
a) Δx = t 0.05 + 0.5
, Δx = 0.5 cm, b) Do not present any problem
Explanation:
The kinematic equation for constant speed is
v = x / t
x = v t
a) the uncertainty can be calculated with
Δx = dx /dv Δv + dx /dt Δt
Δx = t Δv + v Δt
Speed is
v = (50.00 ± 0.05) cm / s
The most common uncertainty for the time of Δt = 0.01 s
We replace
Δx = t 0.05 + 50 0.01
Δx = t 0.05 + 0.5
We must know the time to have an explicit value, if we assume that the measure was t = 1s
Δx = 0.5 cm
b)
Do not present any problem since its value is not very small, we must take as soon as the quantum effects and the velocity are not so high that we must take into account the relativistic effects