1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
3 years ago
6

A speedboat initially at rest accelerates at 4.0 m/s (squared) for 7.0 s. How far does the speedboat move in 7.0 s?

Physics
1 answer:
Ulleksa [173]3 years ago
4 0
I think is 3 becuase when he star at 4
You might be interested in
Descirbe what has happen to earths continents today
kakasveta [241]
Today, we know that the continents rest on massive slabs of rock called tectonic plates. The plates are always moving and interacting in a process called plate tectonics. The continents are still moving today. Some of the most dynamic sites of tectonic activity are seafloor spreading zones and giant rift valleys.
5 0
3 years ago
During a rockslide, a 670 kg rock slides from rest down a hillside that is 740 m along the slope and 240 m high. The coefficient
ElenaW [278]

a) 1.58\cdot 10^6 J

b) 1.15\cdot 10^6 J

c) 0.43\cdot 10^6 J

d) 35.8 m/s

Explanation:

a)

The gravitational potential energy of an object is the energy possessed by the object due to its location with respect to the ground.

It is given by:

U=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height of the object, relative to a reference level

Here, the reference level is taken at the bottom of the hill (where the potential energy is zero).

So, we have:

m = 670 kg is the mass of the rock

g=9.8 m/s^2

h = 240 m is the initial height of the rock

So, the potential energy of the rock just before the slide is

U=(670)(9.8)(240)=1.58\cdot 10^6 J

b)

The energy transferred to thermal energy during the slide is equal to the work done by friction, which is:

W=F_f d

where

F_f is the force of friction

d = 740 m is the displacement of the rock along the ramp

The force of friction is given by:

F_f=-\mu mg cos \theta

where

\mu=0.25 is the coefficient of friction

m = 670 kg is the mass of the rock

\theta is the angle of the ramp

Since we know the lenght of the ramp (d = 740 m) and the height (h = 240 m), we can find the angle:

\theta=sin^{-1}(\frac{h}{d})=sin^{-1}(\frac{240}{740})=18.9^{\circ}

Therefore, the work done by friction is:

W=-\mu m g cos \theta d =-(0.25)(670)(9.8)(cos 18.9^{\circ})(740)=-1.15\cdot 10^6 J

So, the energy transferred to thermal energy is 1.15\cdot 10^6 J.

c)

According to the law of conservation of energy, the kinetic energy of the rock as it reaches the bottom of the hill will be equal to the initial potential energy (at the top) minus the energy transformed into thermal energy.

Therefore, we have:

K_f = U_i -E_t

where here we have:

U_i=1.58\cdot 10^6 J is the potential energy of the rock at the top of the hill

E_t=1.15\cdot 10^6 J is the energy converted into thermal energy

Substituting, we find

K_f=1.58\cdot 10^6-1.15\cdot 10^6=0.43\cdot 10^6 J

So, this is the kinetic energy of the rock at the bottom of the hill.

d)

The kinetic energy of the rock at the bottom of the hill can be rewritten as

K_f=\frac{1}{2}mv^2

where

m is the mass of the rock

v is its final speed

In this problem, we have:

K_f=0.43\cdot 10^6 J is the final kinetic energy of the hill

m = 670 kg is the mass of the rock

Therefore, the final speed of the rock is:

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(0.43\cdot 10^6)}{670}}=35.8 m/s

7 0
4 years ago
What is the energy contained in a 0.950 m3 volume near the Earth's surface due to radiant energy from the Sun?
marta [7]
1000000000000 idk sorry
7 0
3 years ago
PLEASE HELP ME!!!!!!!
melamori03 [73]

<em><u>This</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>do</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>boy</u></em><em><u> </u></em><em><u>or</u></em><em><u> </u></em><em><u>girl</u></em><em><u> </u></em>

6 0
3 years ago
A 100-turn, 3.0-cm-diameter coil is at rest in a horizontal plane. A uniform magnetic field 60%u2218 away from vertical increase
Xelga [282]

Answer:

Induced emf in the coil, E = 0.157 volts

Explanation:

It is given that,

Number of turns, N = 100

Diameter of the coil, d = 3 cm = 0.03 m

Radius of the coil, r = 0.015 m

A uniform magnetic field increases from 0.5 T to 2.5 T in 0.9 s.

Due to this change in magnetic field, an emf is induced in the coil which is given by :

E=-NA\dfrac{\Delta B}{\Delta t}

E=-100\times \pi (0.015)^2\times \dfrac{2.5-0.5}{0.9}

E = -0.157 volts

Minus sign shows the direction of induced emf in the coil. Hence, the induced emf in the coil is 0.157 volts.

8 0
4 years ago
Other questions:
  • Two charged concentric spherical shells have radii 8.83 cm and 15.4 cm. The charge on the inner shell is 5.03 × 10⁻⁸ C and that
    5·1 answer
  • Two circuits have identical voltage sources. The only other elements in the circuits are resistors. The resistor in circuit A ha
    12·1 answer
  • Bowling balls are roughly the same size, but come in a variety of weights. Given its official radius of roughly 0.110 m, calcula
    12·1 answer
  • Why is gas able to flow? a its particles have melted and can move around b its particles have high viscosity and can move around
    5·1 answer
  • How many protons does this atom have?
    15·2 answers
  • Gary needs to move a chair that is 20 pounds at a distance of 5 feet. How much work will he need to produce?
    6·2 answers
  • A car moving at 16.0 m/s, passes an observer while its horn is pressed. the velocity of sound is 343 m/s and the frequency of th
    12·1 answer
  • a loop of area 0.100 m^2 is oriented at a 15.5 degree angle to a 0.500 T magnetic field. it rotates until it is at a 45.0 degree
    7·2 answers
  • Which statements describe acceleration? Check all that apply.
    8·1 answer
  • A tennis player hit a .057-kg ball with a force of 40 N. The duration of the force was .05 s.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!