Answer:
C) 1.15 × 10⁻⁷ mm
Explanation:
Step 1: Given data
Average distance between nitrogen and oxygen atoms: 115 pm
Step 2: Convert the distance to meters (SI base unit)
We will use the conversion factor 1 m = 10¹² pm.
115 pm × (1 m/10¹² pm) = 1.15 × 10⁻¹⁰ m
Step 3: Convert the distance to millimeters
We will use the conversion factor 1 m = 10³ mm.
1.15 × 10⁻¹⁰ m × (10³ mm/1 m) = 1.15 × 10⁻⁷ mm
Answer:75%
Explanation:
First, the balanced reaction equation must be written out clearly as a guide to solving the problem. The molar masses of H3PO4 and K3PO4 are then calculated as they will be consistently required in solving the problem. The theoretical yield is obtained from the amount of H3PO4 reacted. Since 1 mole of H3PO4 yields 1 mole of K3PO4, 0.05 moles of H3PO4 yields 0.05 moles of K3PO4. The mass of K3PO4 is produced is then the product of 0.05 and it molar mass hence the theoretical yield. The % yield is calculated as shown.
Answer:
i think the answer is D. energy
Explanation:
Answer:
Mass released = 8.6 g
Explanation:
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Solution:
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g