Answer:
(a) The total energy of the object at any point in its motion is 0.0416 J
(b) The amplitude of the motion is 0.0167 m
(c) The maximum speed attained by the object during its motion is 0.577 m/s
Explanation:
Given;
mass of the toy, m = 0.25 kg
force constant of the spring, k = 300 N/m
displacement of the toy, x = 0.012 m
speed of the toy, v = 0.4 m/s
(a) The total energy of the object at any point in its motion
E = ¹/₂mv² + ¹/₂kx²
E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²
E = 0.0416 J
(b) the amplitude of the motion
E = ¹/₂KA²

(c) the maximum speed attained by the object during its motion

Answer:
Explanation:
Considering non - relativistic approach : ----
Speed of electron = 1 % of speed of light
= .01 x 3 x 10⁸ m /s
= 3 x 10⁶ m /s
Kinetic energy of electron = 1/2 m v²
= .5 x 9.1 x 10⁻³¹ x ( 3 x 10⁶ )²
= 40.95 x 10⁻¹⁹ J
Kinetic energy in electron comes from lose of electrical energy equal to
Ve where V is potential difference under which electron is accelerated and e is electronic charge .
V x e = kinetic energy of electron
V x 1.6 x 10⁻¹⁹ = 40.95 x 10⁻¹⁹
V = 25.6 Volt .
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer:
Hello.
The gaseous state is the more compressible state, because it has the volume of its container.
The liquid state is virtually incompressible, and the solid state compression is very small.
The plasma is another state that has high compression, but in this case the matter is not bound(we don't have the proton in the core of the atom)