I believe its a...................
Alpha particle is equivalent to B. Helium atom (2 protons, 2 neutrons)
<u>0.219 moles </u><u>moles are present in the flask when the </u><u>pressure </u><u>is 1.10 atm and the temperature is 33˚c.</u>
What is ideal gas constant ?
- The ideal gas constant is calculated to be 8.314J/K⋅ mol when the pressure is in kPa.
- The ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas.
- The combined gas law relates pressure, volume, and temperature of a gas.
We simple use this formula-
The basic formula is PV = nRT where. P = Pressure in atmospheres (atm) V = Volume in Liters (L) n = of moles (mol) R = the Ideal Gas Law Constant.
68F = 298.15K
V = nRT/P = 0.2 * 0.08206 * 298.15K / (745/760) = 4.992Liters
n = PV/RT = 1.1atm*4.992L/(0.08206Latm/molK * 306K)
n = 0.219 moles
Therefore, 0.219 moles moles are present in the flask when the pressure is 1.10 atm and the temperature is 33˚c.
Learn more about ideal gas constant
brainly.com/question/3961783
#SPJ4
Answer:
The number of stamps and cards Maggie has left if she gives 45 stamps to a friend is 183
Explanation:
If Maggie gives 45 stamps to a friend, you must calculate the number of stamps and cards she has left.
You know Maggie has 4 folders with 30 stamps in each folder. So the number of stamps she owns is calculated as:
4 folders*30 stamps in each folder= 120 stamps
If Maggie gives 45 stamps to a friend, then the number of stamps she has left will be calculated as the difference (the subtraction) between the stamps she owned and the ones she gives away:
120 stamps - 45 stamps= 75 stamps
On the other hand, she has 3 binders with 36 baseball cards in each binder. So the number of cards she owns is calculated as:
3 binders * 36 baseball cards in each binders= 108 baseball cards
The number of stamps and cards you have left is calculated as:
75 stamps + 108 baseball cards= 183
<em><u>The number of stamps and cards Maggie has left if she gives 45 stamps to a friend is 183</u></em>