Letra a obrigadoaijahahavqvqgqgqg
<span>The mechanical advantage to simple machines is that they allow a decreased input force to create a larger output force.
<span>TRUE</span></span>
Answer:
vb = 22.13 m/s
So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.
Explanation:
In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:
K.E at A + P.E at A = K.E at B + P.E at B
(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)
(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)
where,
vₙ = velocity of roller coaster at point a = 0 m/s
hₙ = height of roller coaster at point a = 25 m
g = 9.8 m/s²
vb = velocity of roller coaster at point B = ?
hb = Height of Point B = 0 m (since, point is the reference point)
Therefore,
(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)
245 m²/s² * 2 = vb²
vb = √(490 m²/s²)
<u>vb = 22.13 m/s</u>
<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>
Gravitational potential energy can be given by the equation
PE = mgh
where m is the mass,
g is the gravitational constant 9.81 or 10 depending on rounding
and h is the height
well weight is a force equiavlent to
W= m*g
so comparing that to the potential energy equation, divide the potential energy by the height and you will get weight in Newtons
Answer:
n= 16021.03 slaps
Explanation:
Using law of Energy conservation
E_{thermal}= Kinetic energy of hand
⇒
m_h= mass of the hand = 0.4 kg
v_h= velocity of the hand = 10 m/s
n= number of slaps
c= 4180 J/Kg °C
m= mass of chicken = 1 kg
Assuming all the energy of hand goes into chicken
Given Ti=0°C and T_f= 170 F= 76.66°C
Now putting the values in above equation to get n

n= 16021.03 slaps