The self-inductance of a coil will change by 8 times its original value by increasing its radius value by 2 and increasing the length of the coil by 2.
Self-Inductance: -
The definition of self-inductance is the induction of a voltage in a wire that carries current when the current in the wire is changing. In the instance of self-inductance, the circuit itself induces a voltage through the magnetic field produced by a changing current.
We know that the self-inductance of the coil is denoted by: -
L= µ *π*(r)^2*(N)^2*l
Where
L= Self-Inductance of the coil
µ= Magnetic Permeability Constant
r= Radius of the coil
l= Length of the coil
N= Number of turns of the coil
Here Self-inductance of the coil is directly proportional to the length of the coil and the square of the radius of the coil.
So,
On increasing the radius of the coil by a factor of 2 and the length of the coil by 2 the self-inductance of the coil increases by 8 times its original value.
Learn more about Self-Inductance here: -
" brainly.com/question/15293029 "
#SPJ4
The answer is Decibels. <span />
Answer:
Conduction is the transfer of heat between substances that are in direct contact with each other. The better the conductor, the more rapidly heat will be transferred. Metal is a good conduction of heat. Conduction occurs when a substance is heated, particles will gain more energy, and vibrate more.
Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!