Answer:
λ = 1*10⁻¹⁰m
Explanation:
Frequency (f) = 3.0*10¹²MHz = 3.0*10¹⁸Hz
Speed (v) = 3.0*10⁸m/s
Speed (v) of a wave = frequency (f) * wavelength (λ)
V = fλ
Solve for λ,
λ = v / f
λ = 3.0*10⁸ / 3.0*10¹⁸
λ = 1*10⁻¹⁰m
λ = 0.
The question is incomplete, here is the complete question:
Write a balanced chemical equation for each single replacement reaction that takes place in aqueous solution. write no reaction if a reaction does not occur
1.) Zn + PbCl₂
2.) Cu + Fe(NO₃)₂
<u>Answer:</u>
<u>For 1:</u> The reaction does occur.
<u>For 2:</u> The reaction does not occur.
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.

For the given options:
Zinc is more reactive than lead as it lies above in the series. So, it will displace lead from its chemical equation.
The chemical equation for the reaction of zinc and lead chloride follows:

Copper is less reactive than iron as it lies below in the series. So, it will not displace iron from its chemical equation.
The chemical equation for the reaction of copper and iron (II) nitrate follows:

The molality of the solution = 17.93 m
<h3>Further explanation</h3>
Given
6.00 L water with 6.00 L of ethylene glycol(ρ=1.1132 g/cm³= 1.1132 kg/L)
Required
The molality
Solution
molality = mol of solute/ 1 kg solvent
mol of solute = mol of ethylene glycol
- mass of ethylene glycol :
= volume x density
= 6 L x 1.1132 kg/L
= 6.6792 kg
= 6679.2 g
- mol of ethylene glycol (MW=62.07 g/mol)
=mass : MW
=6679.2 : 62.07
=107.608
6 L water = 6 kg water(ρ= 1 kg/L)

I believe the correct answer is the second option. The type of decay that characterizes the change of nuclides to their respective daughter products would be exponential decay. This type of decay is characterized by the decrease of quantity of a material according to the equation y=ab^x.
Answer:
Number of moles = 0.94 mol
Explanation:
Given data:
Number of moles of sodium chloride = ?
Volume of sodium chloride = 1.25 L
Concentration of solution = 0.750 mol/L
Solution:
Formula:
Concentration = number of moles/ volume in L
By putting values.
0.750 mol/L = number of mole / 1.25 L
Number of moles = 0.750 mol/L×1.25 L
Number of moles = 0.94 mol