Answer:
a) 20 m/s
b) 37.5 m)s
Explanation:
Average speed = total distance ÷ total time
=> (a) average speed of a car that travels 400m in 20s
= 400/20 = 20 m/s
& (b) average speed of an athlete who runs 1500m in 4 minutes (or 4×60=240 seconds)
= 1500/240 = 37.5 m/s
The angle of incidence for a ray of light passing through the center of curvature of a concave mirror is 0°.
The angle of incidence is the angle between the surface's normal and the incident ray. For a concave mirror, the normal of the surface is along the center of the curvature, and a ray of light passed through a center of curvature passes through the normal of the surface.
The ray of light retreats its path making a zero angle of reflection. The law of reflection state that the angle of incidence is equal to the angle of reflection; therefore, the angle of incidence of a concave surface passed through the center of curvature is zero degrees.
Learn more about the angle of incidence here:
brainly.com/question/3432273
#SPJ4
Answer:
Vd = 1.597 ×10⁻⁴ m/s
Explanation:
Given: A = 3.90×10⁻⁶ m², I = 6.00 A, ρ = 2.70 g/cm³
To find:
Drift Velocity Vd=?
Solution:
the formula is Vd = I/nqA (n is the number of charge per unit volume)
n = No. of electron in a mole ( Avogadro's No.) / Volume
Volume = Molar mass / density ( molar mass of Al =27 g)
V = 27 g / 2.70 g/cm³ = 10 cm³ = 1 × 10 ⁻⁵ m³
n= (6.02 × 10 ²³) / (1 × 10 ⁻⁵ m³)
n= 6.02 × 10 ²⁸
Now
Vd = (6A) / ( 6.02 × 10 ²⁸ × 1.6 × 10⁻¹⁹ C × 3.9×10⁻⁶ m²)
Vd = 1.597 ×10⁻⁴ m/s
Answer:
Angle of incidence = 20°
Angle of reflection = 20°
Explanation:
Applying,
The first Law of Refraction: The incident ray, the reflected ray and the normal at the point of incidence all lies in the plane.
From the diagram,
Angle of incidence = 90-70
Angle of incidence = 20°
From the law of reflection,
Angle of incidence = Angle of reflection
Therefore,
Angle of reflection = 20°