This would be B
Hope this helped
Let point A be 0.0 miles (first city)
Let point B be 160.5 miles (first city to second city)
Let point C be 28.5 miles (first city to mail stop)
Take C – A = C [28.5 - 0.0 = 28.5] (This checks the distance between city 1 and Mail stop)
Then Take B – C = Distance from the first city to the second city [160.5 - 28.5 = 132 Miles]
Answer: The Mail stop is 132 miles from the Second City.
Answer:
248
Explanation:
L = Inductance of the slinky = 130 μH = 130 x 10⁻⁶ H
= length of the slinky = 3 m
N = number of turns in the slinky
r = radius of slinky = 4 cm = 0.04 m
Area of slinky is given as
A = πr²
A = (3.14) (0.04)²
A = 0.005024 m²
Inductance is given as


N = 248
Answer:
T₂ = 20.06 ° C
Explanation:
Given
P = 90 kg, T₁ = 20 ° C, h = 30 m, c = 1.82 kJ / Kg * ° C
Using the formula to determine the final temperature of the water
T₂ = T₁ * P * h / Eₐ * c
The work done of the person to the water
Eₐ = 1000 kg / m³ * 5 m³ * 9.8 m / s²
Eₐ = 49000 N
T₂ = 20 ° C +[ (90 kg * 30m) / (49000 N * 1.82) ]
T₂ = 20.06 ° C
Answer:
Explanation:
There are two types of collision.
(a) Elastic collision: When there is no loss of energy during the collision, then the collision is said to be elastic collision.
In case of elastic collision, the momentum is conserved, the kinetic energy is conserved and all the forces are conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The kinetic energy of the system before collision = the kinetic energy after the collision
(b) Inelastic collision: When there is some loss of energy during the collision, then the collision is said to be inelastic collision.
In case of inelastic collision, the momentum is conserved, the kinetic energy is not conserved, the total mechanical energy is conserved and all the forces or some of the forces are non conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The total mechanical energy of the system before collision = total mechanical of the system after the collision