Answer:
D
Explanation:
he describes as he writes them down
Answer:197.504 N
Explanation:
Given
Two Charges with magnitude Q experience a force of 12.344 N
at distance r
and we know Electrostatic force is given



Now the magnitude of charge is 2Q and is at a distance of 

F'=16F
F'=197.504 N
Answer:
1) Periodically check the no stop or NDL time on their computers
2) The dive computer planning mode can be used if available
3) Make use of a dive planning app
4) Check data from the RDP table or an eRDPML
Explanation:
The no stop times information from the computer gives the no-decompression limit (NDL) time allowable which is the time duration a diver theoretically is able to stay at a given depth without a need for a decompression stop
The dive computer plan mode or a downloadable dive planning app are presently the easiest methods of dive planning
The PADI RDP are dive planners based on several years of experience which provide reliable safety limits of depth and time.
Answer:
Due to the resistance of air, a drag force acts on a falling body (parachute) to slow down its motion. Without air resistance, or drag, objects would continue to increase speed until they hit the ground. The larger the object, the greater its air resistance. Parachutes use a large canopy to increase air resistance. Also, Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down. Sorry if not helpful.
Answer:
E_particle = 1,129 10⁻²⁰ J / particle
T= 817.5 K
Explanation:
Energy is a scalar quantity so it is additive, let's look for the total energy of each gas
Gas a
E_a = 2 5000 = 10000 J
Gas b
E_b = 3 8000 = 24000 J
When the total system energy is mixed it is
E_total = E_a + E_b
E_total = 10000 + 24000 = 34000
The total mass is
M = m_a + m_b
M = 2 +3 = 5
The average energy among the entire mass is
E_averge = E_total / M
E_averago = 34000/5
E_average = 6800 J
One mole of matter has Avogadro's number of atoms 6,022 10²³ particles
Therefore, each particle has an energy of
E_particle = E_averag / 6.022 10²³ = 6800 /6.022 10²³
E_particle = 1,129 10⁻²⁰ J / particle
For find the temperature let's use equation
E = kT
T = E / k
T = 1,129 10⁻²⁰ / 1,381 10⁻²³
T = 8.175 102 K
T= 817.5 K