Answer:
because weight depends on the gravity, gravity decrease s with increasing altitude,hence I have less weight
Answer:
True; When one side of a molecule is electronegative (δ-) and the other side of the
molecule is electropositive (δ+), it is said to have a dipole moment.
Explanation:
A dipole moment exists in a molecule as a result of differences in the electronegativity values between the atoms of the elements involved in the chemical bonding.
When a strogly electronegative atom such as oxygen or chlorine is chemically bonded to a less electronegative or an electropositive atom such as hydrogen, there is an uneven sharing of the electrons involved in the bonding. The more electronegative atoms tends to draw the shared electrons mostly to themselves. This induces a partially negative charge (δ-) on them while leaving the electropositive atoms with a partially positive charge (δ+).
Water is an example of a molecule having a dipole moment. The oxygen atoms are more electronegative than hydrogen and as such draw the shared electrons to themselves more, inducing a partial positive charge (δ+) on the hydrogen atoms while they themselves develop a partial negative charge (δ-).
Explanation:
The important quantum-mechanical concepts associated with the Bohr model of atom are :
1. Electrons are nothing but particles that revolve around the nucleus in discrete orbitals.
2. Energy is associated with each orbital is quantised. Meaning electron in each shell will have energy in multiple of a fixed quanta.
There will be chemical reaction(equation4Na+02--2Na20
Answer:
1.327 g Ag₂CrO₄
Explanation:
The reaction that takes place is:
- 2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq)
First we need to <em>identify the limiting reactant</em>:
We have:
- 0.20 M * 50.0 mL = 10 mmol of AgNO₃
- 0.10 M * 40.0 mL = 4 mmol of K₂CrO₄
If 4 mmol of K₂CrO₄ were to react completely, it would require (4*2) 8 mmol of AgNO₃. There's more than 8 mmol of AgNO₃ so AgNO₃ is the excess reactant. <em><u>That makes K₂CrO₄ the limiting reactant</u></em>.
Now we <u>calculate the mass of Ag₂CrO₄ formed</u>, using the <em>limiting reactant</em>:
- 4 mmol K₂CrO₄ *
= 1326.92 mg Ag₂CrO₄
- 1326.92 mg / 1000 = 1.327 g Ag₂CrO₄