Answer:
The specific heat of gold is 0.129 J/g°C
Explanation:
Step 1: Data given
Mass of gold = 15.3 grams
Heat absorbed = 87.2 J
Initial temperature = 35.0 °C
Final temperature = 79.2 °C
Step 2:
Q = m*c*ΔT
⇒ Q =the heat absorbed = 87.2 J
⇒ m = the mass of gold = 15.3 grams
⇒ c = the specific heat of gold = TO BE DETERMINED
⇒ ΔT = The change in temperature = T2 - T1 = 79.2 - 35.0 = 44.2 °C
87.2 J = 15.3g * c * 44.2°C
c = 87.2 / (15.3 * 44.2)
c = 0.129 J/g°C
The specific heat of gold is 0.129 J/g°C
Answer:
See explanation
Explanation:
The reaction to be considered is shown below;
H2CO3<------->CO2 + H2O
We know that when a constraint such as a sudden change in concentration, pressure or temperature is imposed on a reaction system in equilibrium, the system has to adjust itself by shifting in a particular direction in order to cancel the constraint.
Now, if we remove CO2, the equilibrium position must shift to the right by the decomposition of more H2CO3 to establish equilibrium again.
Answer:
B. Equal to 7.
Explanation:
Hydrobromic acid is a strong acid that decreases pH and ammonia is a strong base that increases pH.
As the initial pH of water is 7,0 the addition of 35.0mL of 0.400M HBr will produce a pH less than 7,0. But, the same effect of decreasing pH is reverted for the addition of 35.0mL of 0.400M HNO3.
That means the net effect of the two addition is to have a pH:
B. Equal to 7.
I hope it helps!
Probably life science or biology.
So multiply number of moles x number of atoms/mole = 1.8066 x 10^24 atoms of H2. One mole of any gas at STP has a volume of 22.4 L. So first determine the number of moles of gas you have.
for example do 7

that 's what I think