Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
Answer:
Simple machine. Simple machine, any of several devices with few or no moving parts that are used to modify motion and force in order to perform work. The simple machines are the inclined plane, lever, wedge, wheel and axle, pulley, and screw. simple machinesSix simple machines for transforming energy into work.
Explanation:
hope this helps
B. Newton's First Law, I'm pretty sure. The first states that an object in motion stays in motion, and an object at rest stays at rest until an outside force is applied, and that seems pretty relevant.
<u>Given;</u>
mass m = 75 kg
acceleration a = 24.5 ms²
<em>F = ma </em>
F = 75 kg * 24.5 ms²
= 1837.5 kg ms².
Answer:
29.38 seconds
Explanation:
Half life, T = 22.07 s
No = 1293
Let N be the number of atoms left after time t
N = 1293 - 779 = 514
By the use of law of radioactivity

Where, λ is the decay constant
λ = 0.6931 / T = 0.6931 / 22.07 = 0.0314 decay per second
so,


take natural log on both the sides
0.9225 = 0.0314 t
t = 29.38 seconds