Answer:

Explanation:
Hello!
In this case, since the combustion reaction of methanol is:

In such a way, since there is 1:3/2 mole ratio between methanol and oxygen, we can compute the moles of oxygen that are needed to burn 2.56 moles of methanol as shown below:

Best regards!
Answer:
D. 
Explanation:
Hello!
In this case, for the given set of chemical reactions, it is possible to infer that D. is a categorized as redox due to the following:
Since both chlorine and bromine remain as diatomic gases, their oxidation states in such a form is 0, but as anions with lithium cations they have a charge of - according to the following reaction and half-reactions:


Unlike the other reactions whereas no change in the oxidation states is evidenced.
The energy can be shown as:
Q = ms dT
Whereas, m is the mass of block
s is specific heat
dT is change in temperature.
Copper block having the lowest specific heat and thus having the higher change in temperature and therefore having the higher final temperature.
This is an incomplete question, here is a complete question.
Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid-base properties.
CaCO₃, Ksp = 8.7 × 10⁻⁹
Answer : The solubility of CaCO₃ is, 
Explanation :
As we know that CaCO₃ dissociates to give
ion and
ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ca^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
Let solubility of CaCO₃ be, 's'




Therefore, the solubility of CaCO₃ is, 
Answer:

The prefix "Tetra" implies 4 Bromine atoms. The prefix "Deca" implies 10 fluorine atoms.