I am not sure about this but I think it’s y
Kingdom, phylum or division, class, order, family, genus, species
Answer:
0.075 moles n=m/M so divide the mass (m) by the molar mass (M) to get the n which is the number of moles
Explanation:
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1
Answer:
The molar mass of unknown gas is 145.82 g/mol.
Explanation:
Volume of oxygen gas effused under time t = 8.24 mL
Effusion rate of oxygen gas = 
Molar mass of oxygen gas = 32 g/mol
Volume of unknown gas effused under time t = 3.86 mL
Effusion rate of unknown gas = 
Molar mass of unknown gas = M
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:



