We need to use the kinematic equation
S=ut+(1/2)at^2
where
S=displacement (+=up, in metres)
u=initial velocity (m/s)
t=time (seconds)
a=acceleration (+=up, in m/s^2)
Substitute values
S=displacement = 1.96-2.27 = -0.31 m (so that shot does not hit his head)
u=11.1
a=-9.81 (acceleration due to gravity)
-0.31=11.1t+(1/2)(-9.81)t^2
Rearrange and solve for t
-4.905t^2+11.1t-0.31=0
t=-0.02756 or t=2.291 seconds
Reject the negative root to give
t=2.29 seconds (to 3 significant figures)
Because the more advances made in the world means the more we can learn on how things work and how we can better the lives of humans and other species. If we didn't have scientific advancements we wouldn't have cell phones, electric, tv, car, computers, ect. We would still be living in Cave man era with clubs and horrible language skills.
Answer:
The required angle is (90-25)° = 65°
Explanation:
The given motion is an example of projectile motion.
Let 'v' be the initial velocity and '∅' be the angle of projection.
Let 't' be the time taken for complete motion.
Let 'g' be the acceleration due to gravity
Taking components of velocity in horizontal(x) and vertical(y) direction.
= v cos(∅)
= v sin(∅)
We know that for a projectile motion,
t =
Since there is no force acting on the golf ball in horizonal direction.
Total distance(d) covered in horizontal direction is -
d =
×t = vcos(∅)×
=
.
If the golf ball has to travel the same distance 'd' for same initital velocity v = 23m/s , then the above equation should have 2 solutions of initial angle 'α' and 'β' such that -
α +β = 90° as-
d =
=
=
=
.
∴ For the initial angles 'α' or 'β' , total horizontal distance 'd' travelled remains the same.
∴ If α = 25° , then
β = 90-25 = 65°
∴ The required angle is 65°.