Answer:
3,964 years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of the element is 5,730 years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(5,730 years) = 1.21 x 10⁻⁴ year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
where, k is the rate constant of the reaction (k = 1.21 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of the sample ([A₀] = 100%).
[A] is the remaining concentration of the sample ([A] = 61.9%).
∴ t = (1/k) ln([A₀]/[A]) = (1/1.21 x 10⁻⁴ year⁻¹) ln(100%/61.9%) = 3,964 years.
Answer and Explanation:
The basic unit which are that are important in chemistry are meter, kilogram ,mol,
Candela which is the unit of luminous of intensity is not so important in physics
(a) SI unit of length is meter (m)
(b) Si unit of volume is 
(c) Si unit of mass is kilogram (kg)
(d) SI unit of time is second (s)
(e) SI unit of temperature is kelvin (K)
Answer:
Se aplica la leyes d ellos gases ideales para esto se convierten las unidades de Presión en atmósferas y Temperatura a Kelvin y si no se tiene el volumen el volumen equivale a 22.4Litros
Explanation: