Moles are used conveniently in chemistry especially in stoichiometric calculations involving reactions. The unit of mole is a collective term that holds 6.022×10^23 particles. These particles is a general term for any small units of matter including molecules, atoms and sub-particles. This ratio of 6.022×10^23 particles to 1 mole is known to be the Avogadro's number. Its exact number is actually <span>6.0221409</span>×10^23. We use this constant in our stoichiometric calculation as follows:
15 moles oxygen * (6.022×10^23 molecules/ 1 mole oxygen) = 9.033×10^24 molecules of oxygen
Answer:
In crystal structure close packing is define as space efficient arrangement of constituent particles to form a crystal lattice.
Explanation:
closest packing
In crystal structure close packing is define as space efficient arrangement of constituent particles to form a crystal lattice.
Difference between hexagonal closest packing and cubic closest packing
In cubic closest packing arrangement, each sphere is surrounded by 12 other spheres on the other hand in case of hexagonal close packing, layers of spheres are packed so that spheres in alternating layers overlie one another.
unit cell for each closest packing arrangement
The hexagonal closest packed arrangement has a coordination number of 12 and it consists of 6 atoms per unit cell. The face centered cubic lattice has a coordination number of 12 and it consists of 4 atoms per unit cell. In case of body centered cubic crystal the coordination number is 8 and it consists of 2 atoms per unit cell.
Seven diatomic elements are H₂, Cl₂, N₂, F₂, Br₂, I₂ and O₂.
<h3>Which are diatomic molecules?</h3>
Diatomic molecules are those molecules in which two atoms of same elements are present, and they are combined to attain the stability.
The seven diatomic molecules which are exist in the chemistry are:
- Hydrogen gas (H₂)
- Chlorine gas (Cl₂)
- Nitrogen gas (N₂)
- Fluorine gas (F₂)
- Bromine gas (Br₂)
- Iodine gas (I₂)
- Oxygen gas (O₂)
Hence H₂, Cl₂, N₂, F₂, Br₂, I₂ and O₂ are 7 diatomic molecules.
To know more about diatomic molecules, visit the below link:
brainly.com/question/14466404
#SPJ1
Mass of copper : 0.165 g
<h3>Further explanation</h3>
Given
5.0 A over 100 seconds
Required
Mass of copper
Solution
Faraday's law:
<em>The mass of the substance formed at each electrode is proportional to the electric current flowing in the electrolysis</em>
<em />
<em />
e = Ar / valence = eqivalent weight
i = current
t = time
W = weight
CuSO₄ ----> Cu²⁺ + SO₄²⁻
Cu ----> Cu²⁺ + 2e
e = Ar/2
= 63,5/2 = 31,75
