The equilibrium constant, k of the reaction in which case, the concentrations of the given reactants and products are as indicated is; Choice A; K = 3.1 x 10⁵
<h3>What is the equilibrium constant , k of the reaction as described in the task content?</h3>
It follows from above that the concentrations of the reactants and products are as follows; [H2] = 0.10 M, [N2] = 0.10 M, and [NH3] = 5.6 M at equilibrium.
Hence, the equilibrium constant of the reaction in discuss is;
K = [5.6]²/[0.10]³[0.10]
k = 5.6² × 10⁴
k = 3.136 × 10⁵
K = 3.1 × 10⁵.
Read more on equilibrium constant;
brainly.com/question/1619133
#SPJ1
Answer:
Mass = 51 g
Explanation:
Given data:
Mass of nitrogen = 41.93 g
Mass of ammonia formed = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 41.93 g/ 28 g/mol
Number of moles = 1.5 mol
now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
1.5 : 2/1×1.5 = 3 mol
Mass of ammonia formed:
Mass = number of moles × molar mass
Mass = 3 mol × 17 g/mol
Mass = 51 g
Answer:
D & E
Explanation:
I think this is dealing with latent heat and D & E would be the range where you will find solid and liquid phases in equilibrium, cuz it starts as gas at from A to B, B to C is gas and liquid equilibrium, C to D is liquid, D to E solid and liquid, and then E to F is solid.
Answer:
17.5609g
Explanation:
According to the question, a sample of mass 6.814 grams is added to another sample weighing 0.08753 grams. That is weight of sample 1 + weight of sample 2;
6.814 + 0.08753 = 6.90153grams
Next, the subsequent mixture is then divided into exactly 3 equal parts i.e. 6.90153grams divided by 3
= 6.90153/3
= 2.30051grams.
One of the equal parts is 2.30051grams, which is then multiplied by 7.6335 times I.e. 2.30051 × 7.6335 = 17.5609grams
Therefore, the final mass is 17.5609grams
Answer:
Functional group
Explanation:
Functional group is specific group of atom or bond associated to an organic compound that determines the chemical properties of that compound. This atom is bonded in a certain way or specific arrangement to give the compound a peculiar physical and chemical characteristics.
Functional group like the alkyl group -CH3 is found in organic compound series like the alkane family. The chemical properties specific to the alkyl group will be active in the compound of alkane family because of the presence of the functional group Alkyl(-CH3). The functional group also plays a major role in the chemical reactivity of the compound. For example the functional group of alkyl are often non reactive, this non reactive nature will definitely rub off on the chemical properties of the compound it is attached.
Functional group like -OH is usually found in Alcohol . Due to the presence of this functional group (-OH) alcohol possess a peculiar chemical properties. The compounds possess an hydrogen bond which invariably lead to the higher boiling points of the alcohol compounds. Other functional group can be bonds like double bond found in alkene compound or triple bond found in alkyne compound.