1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tcecarenko [31]
3 years ago
7

Consider the collision of a 1500-kg car traveling east at 20.0 m/s (44.7 mph) with a 2000-kg truck traveling north at 25 m/s (55

.9 mph). The cars lock together in such a way as to prevent them from separating or rotating significantly. One second before the collision, the car is located at position (x,y) = (-20,0) m and the truck is located at position (x,y) = (0,-25) m.
1. Calculate the x-coordinate of the center of mass of the two-automobile system, xCM​​, one second before the collision. ________ m
2. Calculate the y-coordinate of the center of mass of the two-automobile system, xCM​​, one second before the collision.________ m
3. Calculate the magnitude of the velocity of the center of mass of the two-automobile system, vCM​​, one second before the collision. ________ m/s
4. Calculate the direction of the velocity of the center of mass of the two-automobile system, vCM​​ one second before the collision. (Give you answer in degrees relative to the positive x-axis which points to the east.)
________ degrees
5. Calculate the magnitude of the velocity of the center of mass of the two-automobile system, vCM, immediately after the collision. ________ m/s
6. Calculate the direction of the velocity of the center of mass of the two-automobile system, vCM immediately after the collision. (Give you answer in degrees relative to the positive x-axis which points to the east.)
________ degrees
Physics
1 answer:
masha68 [24]3 years ago
4 0

Answer:

1. X_{cm}=-8.57m

2. Y_{cm}=-14.29m

3. V_{cm} = 16.66m/s

4. α = 59.05°

5. V_{cm} = 16.66m/s

6. α = 59.05°

Explanation:

The position of the center of mass 1s before the collision is:

X_{cm}=\frac{X_c*mc+X_t*m_t}{m_c+m_t}

where

X_c=-20m;  m_c=1500kg;  

X_t=0m;   m_t=2000kg;

Replacing these values:

X_{cm}=-8.57m

Y_{cm}=\frac{Y_c*mc+Y_t*m_t}{m_c+m_t}

where

Y_c=0m;  m_c=1500kg;  

Y_t=-25m;   m_t=2000kg;

Replacing these values:

Y_{cm}=-14.29m

The velocity of their center of mass is:

V_{cm-x}=\frac{V_{c-x}*mc+V_{t-x}*m_t}{m_c+m_t}

where

V_{c-x}=20m/s;  m_c=1500kg;  

V_{t-x}=0m/s;   m_t=2000kg;

Replacing these values:

V_{cm-x}=8.57m/s

V_{cm-y}=\frac{V_{c-y}*mc+V_{t-y}*m_t}{m_c+m_t}

where

V_{c-y}=0m;  m_c=1500kg;  

V_{t-y}=-25m;   m_t=2000kg;

Replacing these values:

V_{cm-y}=-14.29m

So, the magnitude of the velocity is:

V_{cm}=\sqrt{V_{cm-x}^2+V_{cm-y}^2}

V_{cm}=16.66m/s

The angle of the velocity is:

\alpha =atan(V_{cm-y}/V_{cm-x})

\alpha=59.05\°

Since on any collision, the velocity of the center of mass is preserved, then the velocity after the collision is the same as the previously calculated value of 16.66m/s at 59.0° due north of east

You might be interested in
This is a change in an object's position. <br> Net Force<br> Gravitational Pull<br> Motion<br> Force
alexira [117]

Answer:

Motion

Explanation:

because when something moves its call motion

3 0
3 years ago
What does gravitational potential energy depend on?
jolli1 [7]
It depends on the mass of an object and acceleration because of the gravity and the height of an object
3 0
3 years ago
How many atoms of oxygen in the chemical formula 2 Ca(CIO2)2?<br> O 2<br> O 4<br> O 6<br> O 8
alexdok [17]

Answer:

I believe it's 8

Explanation:

3 0
2 years ago
William Tell shoots an apple from his son's head. The speed of the 102-g arrow just before it strikes the apple is 26.7 m/s, and
xxMikexx [17]

To develop the problem, we require the values concerning the conservation of momentum, specifically as given for collisions.

By definition the conservation of momentum tells us that,m_1V_1+m_2V_2 = (m1+m2)V_f

To find the speed at which the arrow impacts the apple we turn to the equation of time, in which,

t= \sqrt{\frac{2h}{g}}

The linear velocity of an object is given by

V=\frac{X}{t}

Replacing the equation of time we have to,

V_f = \frac{X}{t}\\V_f =\frac{X}{\sqrt{\frac{2h}{g}}}\\V_f = \frac{6.9}{\sqrt{\frac{2(1.85)}{9.8}}}\\V_f = 11.23m/s

Velocity two is neglected since there is no velocity of said target before the collision, thus,

m_1V_1 = (m1+m2)V_f

Clearing for m_2

m_2 = \frac{m_1V_1}{V_f}-m_1\\m_2 = \frac{(0.102)(26.7)}{11.23}-0.102\\m_2 = 0.1405KG= 140.5g

8 0
3 years ago
Help!?!?!??!!?!?!?!?!?!?!
Marysya12 [62]

D only kinetic energt because if it had heluim or any thing jt will float up

4 0
3 years ago
Other questions:
  • The gas tank of Dave’s car has a capacity of 12 gallons. The tank was 38 full before Dave filled it to capacity. It cost him $2.
    8·2 answers
  • A 10 kg bowling ball would require what force to accelerate down an alleyway at a rate of 3 m/s2?
    7·1 answer
  • Two Question!
    14·1 answer
  • In the simple Bohr model of the eighth excited state of the hydrogen atom, the electron travels in a circular orbit around a fix
    5·1 answer
  • A ball is dropped and falls with an acceleration of 9.8m/s2 downward. it hit the ground with a velocity of 49 m/s downward. how
    14·1 answer
  • Laboratory measurements show hydrogen produces a spectral line at a wavelength of 486.1 nanometers (nm). A particular star's spe
    8·2 answers
  • The charge on any negatively charged oil droplet is always a whole-number multiple of the fundamental charge of a single electro
    10·1 answer
  • If a behavior tends to increase after a consequence occurs, that consequence is most likely used as.
    15·1 answer
  • On a planet where g = 10.0 m/s2 and air resistance is negligible, a sled is at rest on a rough inclined hill rising at 30°. The
    12·2 answers
  • Diffraction spreading for a flashlight is insignificant compared with other limitations in its optics, such as spherical aberrat
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!