Answer:
A. Linkedln
Explanation:
In addition to stand-alone discussion boards, all of these sites include discussion boards as part of their features except:
A. Linkedln
All other application in addition to stand-alone Google, Yahoo, Microsoft, etc. include discussion board.
The change in the kinetic energy refers to the work done in displacing a body, thus, the change in the kinetic energy of an object refers to the work done on the object.
The correct formula to use is:
W = Initial kinetic energy - Final kinetic energy;
Where, W = change in kinetic energy
Final kinetic energy and initial kinetic energy = 1/2 MV^2
Initial velocity = 15 m/s
Final velocity = 13.5 m/s
Initial mass = 0.650 kg
Final mass = 0.950 kg
W = 1/2 [0.650* (15 *15)] - 1/2 [0.950 * (13.5 * 13.5)]
W = 146.25 - 173.13 = 26.88
Therefore, the change in kinetic energy is 26.88 J.
The negative sign has to be ignored, because change in kinetic energy can not be negative.
<span />
Apart from cutaneous respiration<span> present in all </span>species<span>, most lissamphibians are born in an aquatic larval stage with gills. After metamorphosis, they develop lungs to breathe on land. The larvae of urodeles and apods present external, filamentous and highly branched gills which allow them to breathe underwater.
</span>
Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.