Answer:
The molarity of the diluted HCl solution: <u>M₂ = 0.045 M</u>
Explanation:
To find- the molarity of the diluted HCl solution (M₂)
Given- <u>For original HCl solution</u>-
Molarity: M₁ = 1.5 M, Volume: V₁ = 60.0 ml = 0.06 L (∵ 1L = 1000 mL)
Then this original solution is diluted to a volume of 2 L
Thus <u>for the diluted HCl solution</u>-
The Volume of the diluted HCl solution: V₂ = 2 L
<u>So the Molarity of the diluted HCl solution (M₂) can be calculated by the </u><u><em>dilution equation:</em></u>



<u>Therefore, the molarity of the diluted HCl solution: M₂ = 0.045 M</u>
The choices can be found elsewhere and as follows:
A)The reaction requires the collision of three particles with the correct energy and orientation.
<span>B) All reactions that occur in one step are slow. </span>
<span>C)The probability of an effective three-particle collision is low. </span>
<span>D) The transition state is low in energy.
</span>
I think the correct answer from the choices listed above is option C. If the uncatalyzed reaction occurs in a single elementary step, it is a slow reaction because the probability of an effective three-particle collision is low.
The answer is solution because it cannot be separated or colliod homogenous mixture which has all the components in the same phase. emulsions or what ever idk your answer but that my best answer :3
Answer:
Im pretty sure that 5N to the Right is correct answer