Answer:
Acceleration due to gravity is reduced to half its value on the earth's surface at an altitude of 2.65×106 m
Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>
Answer:
Hydrogen
Explanation:
Just to provide some background, an element is a pure substance consisting of only one type of atom. An atom is the smallest constituent of matter. All elements are comprised of a single type of atom (e.g., gold is composed of gold atoms, helium of helium atoms, phosphorus phosphorus, and so on).
A molecule is a group of two or more atoms. They can be the same atom (homonuclear), such as or different atoms (heteronuclear).
Some examples of homonuclear molecules include:
Hydrogen (H2)
Nitrogen (N2)
Phosphorus (P4)
Some examples of heteronuclear molecules include:
Carbon dioxide (CO2)
Sulfuric acid (H2SO4)
Methane (CH4)
1,3-butadiene is the simplest conjugated diene and undergoes 1,4 addition reaction in acidic environment.
Chemical reaction: CH₂=CH-CH=CH₂ + H₂O → CH₃-CH=CH-CH₂-OH.
CH₂=CH-CH=CH₂ - 1,3-butadiene.
CH₃-CH=CH-CH₂-OH - 2-buten-1-ol.
Diene<span> or </span>diolefin<span> is a </span>hydrocarbon<span> that has two </span>carbon double bonds<span>.</span>
Answer:
Sodium ion ( Na+) is known to have no smell at all but however appears salty which is the reason why the compound Sodium Chloride has the same type of taste.
Hydrogen ions ( H+) are known to have no taste which implies it being tasteless. It is also important to note that it has no smell too when perceived (odorless).