Factors that increases reaction rate such as increase in concentration or pressure will reduce reaction time whereas factors that decrease reaction rate such as inhibitors will increase reaction time.
<h3>What are the factors that affect reaction rate?</h3>
Factors that affect reaction rate are those factors which increase or decrease the rate of chemical reaction.
The factors that affect reaction rate include:
- temperature
- concentration/pressure
- catalysts
- surface area
- nature of substance
Any factor that increases reaction rate such as increase in concentration or pressure will reduce reaction time whereas factors that decrease reaction rate such as inhibitors will increase reaction time.
Learn more about factors affecting reaction rate at: brainly.com/question/14817541
#SPJ1
"Only electrons are involved in chemical reactions" is the statement among the following choices given in the question that is the <span>best explanation for chemical reactions not to produce radioactive particles. The correct option among all the options that are given in the question is the third option or option "C". </span>
Answer:
"Anion" is correct option
Explanation:
An anion is an ion that has gained one or more electrons, acquiring a negative charge.
Answer:
- <em>The volume of 14.0 g of nitrogen gas at STP is </em><u><em>11.2 liter.</em></u>
Explanation:
STP stands for standard pressure and temperature.
The International Institute of of Pure and Applied Chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:
- Before the change, STP was defined as a temperature of 273.15 K and an absolute pressure of exactly 1 atm (101.325 kPa).
- After the change, STP is defined as a temperature of 273.15 K and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).
Using the ideal gas equation of state, PV = nRT you can calculate the volume of one mole (n = 1) of gas. With the former definition, the volume of a mol of gas at STP, rounded to 3 significant figures, was 22.4 liter. This is classical well known result.
With the later definition, the volume of a mol of gas at STP is 22.7 liter.
I will use the traditional measure of 22.4 liter per mole of gas.
<u>1) Convert 14.0 g of nitrogen gas to number of moles:</u>
- n = mass in grams / molar mass
- Atomic mass of nitrogen: 14.0 g/mol
- Nitrogen gas is a diatomic molecule, so the molar mass of nitrogen gas = molar mass of N₂ = 14.0 × 2 g/mol = 28.0 g/mol
- n = 14.0 g / 28.0 g/mol = 0.500 mol
<u>2) Set a proportion to calculate the volume of nitrogen gas:</u>
- 22.4 liter / mol = x / 0.500 mol
- Solve for x: x = 0.500 mol × 22.4 liter / mol = 11.2 liter.
<u>Conclusion:</u> the volume of 14.0 g of nitrogen gas at STP is 11.2 liter.