As per as the Multiplication rules of the significant figures, whenever any numbers in the decimals forms are multiplied or divided then result in mentioned in such a way so that the significant figures after the decimal will be same as that in the given least condition.
_______________________________
102900/12 = 8575
170 × 1.27 = 215.9
∴ (102,900 ÷ 12) + (170 × 1.27) = 8575 + 215.9
= 8790.9
Now, As per as Above rules, answer in correct significant figures will be = 8791.
(i) We start by calculating the mass of sugar in the solution:
mass of sugar = concentration × solution mass
mass of sugar = 2.5/100 × 500 = 12.5 g
Then now we can calculate the amount of water:
solution mass = mass of sugar + mass of water
mass of water = solution mass - mass of sugar
mass of water = 500 - 12.5 = 487.5 g
(ii) We use the following reasoning:
If 500 g solution contains 12.5 g sugar
Then X g solution contains 75 g sugar
X=(500×75)/12.5 = 3000 g solution
Now to get the amount of solution in liters we use density (we assume that is equal to 1):
Density = mass / volume
Volume = mass / density
Volume = 3000 / 1 = 3000 liters of sugar solution
<span>Helium = 1
Carbon = 8
Nitrogen = 8
Strontium = 52
Tellurium = 71
If you look on a periodic table, on each element there is a number on
the top left. This represents the number of protons in an atom. Protons
have a mass of 1 (in relative to Carbon-13)
If we take nitrogen-15 for example; The number 15 tells you that the
isotope has a mass of 15. Now if you look on the periodic table,
Nitrogen has a proton number of 7. Only protons and neutrons have a
mass, electrons are considered to be negligable. Therefore the number of
neutrons Nitrogen-15 contains is 15 - 7 = 8 </span>
The solution that will have the lowest freezing point is 5.0 SODIUM CHLORIDE.
Adding solute to solvents usually result in the depression of the freezing point. The higher the quantity of the solute that is added, the lower the freezing point of the solution.